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Abstract

We characterize the different morphologies adopted by a drop of liquid placed on two randomly oriented fibers,
which is a first step toward understanding the wetting of fibrous networks. The present work reviews previous
modeling for parallel and touching crossed fibers and extends it to an arbitrary orientation of the fibers characterized
by the tilting angle and the minimum spacing distance. Depending on the volume of liquid, the spacing distance
between fibers and the angle between the fibers, we highlight that the liquid can adopt three different equilibrium
morphologies: (1) a column morphology in which the liquid spreads between the fibers, (2) a mixed morphology
where a drop grows at one end of the column or (3) a single drop located at the node. We capture the different
morphologies observed using an analytical model that predicts the equilibrium configuration of the liquid based on
the geometry of the fibers and the volume of liquid.

1 Introduction

The spreading behavior of a liquid placed on a solid sub-
strate controls a broad range of natural and man-made
processes, from the clinging of morning dew to spider
webs to the coating of surfaces [1, 2, 3, 4, 5, 6, 7]. Thus,
characterizing wetting phenomena offers insights into the
complex physics of wet or partially wet systems. These
studies also provide knowledge that can be applied to
improve and develop industrial methods in which cap-
illary forces play a key role, e.g. coating, mixing and
agglomeration [8, 9, 10, 11].

When a volume of liquid is placed between two solid
surfaces, a capillary bridge forms. The equilibrium shape
of the liquid bridge has been studied for different config-
urations of the solid surfaces, e.g. flat plates and spheri-
cal grains [12, 13, 14, 15]. The shape of the liquid bridge
minimizes the interfacial free energy. When the distance
between the surfaces is increased, the liquid exerts an
attractive force that pulls the two surfaces together [16].
This cohesive capillary force gives rise to the rich me-
chanical behavior of wet granular matter [8].

One configuration of solid surfaces has received less at-
tention: the formation of capillary bridges between long
cylinders, or fibers [17, 18]. It is evident that fibrous
media are ubiquitous in both natural systems, such as
feathers and hair [19], and engineered products, includ-
ing paper and textiles [20]. Understanding the wetting of
fibers is thus important for many industries. The wetting
influences the dyeing of textiles, the coloring of human
hair and the spreading of ink on paper. In particular,
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Fig. 1. SEM pictures of drops of binder lying on glass wool. (a)
Drop on a single fiber, (b) liquid in the drop state between two
crossed fibers, (c) and (d) liquid in the column state between
two fibers. Scale bars are 10 µm (pictures from Saint-Gobain
Research, reproduced with permission from Bintein [21]).

configurations for neighboring pairs of fibers: parallel
fibers, touching crossed fibers and non-touching crossed
fibers. In considering a global model for fiber arrays, we
thus need to account for the latter case, in which the
fibers are not touching. Indeed, the closest distance be-
tween non-parallel fibers is an additional parameter that
affects the equilibrium morphology of the liquid.

In this paper, we study the wetting morphologies on a
pair of fibers that are randomly oriented and spaced thus
considering a more general situation than previous work
performed on liquid bridges between touching or parallel
fibers. In particular, we characterize the transitions be-
tween the wetting morphologies on a pair of crossed fibers
with respect to four variables: the angle between the fibers
δ, the distance between the fibers h, the fiber radius a and
the volume of liquid V . Thus, the new model presented in
this paper describes the equilibrium wetting morpholo-
gies associated with any fiber configuration and recovers
the results obtained previously for parallel and touching
crossed fibers. We also highlight the understanding of the
liquid morphology between randomly oriented fibers in
a new 3D diagram. This characterization of equilibrium
wetting morphologies is essential for future studies on the
properties of wet fibrous media including their drying be-
haviour.

2 Experimental methods

We consider an array of randomly oriented fibers, whose
typical mesh size is large compared to the drop radius,
i.e. an array made of long fibers and with a large poros-
ity, as illustrated in fig. 2(a); the notations we will use are
given in fig. 2(b). A drop of liquid deposited on the ar-
ray encounters one of four possible fiber configurations: at
equilibrium the liquid can be located i) on a single fiber,
ii) on two parallel fibers (h ̸= 0 and δ = 0), iii) at the
point of contact of two touching crossed fibers (h = 0 and
δ ̸= 0), or iv) at the point of minimum distance between
two non-touching crossed fibers (h ̸= 0 and δ ̸= 0). Only
the three latter configurations result in the formation of

Fig. 2. (a) Representation of an array of randomly oriented
rigid fibers. (b) Schematic of the system composed of two fibers
of radius 2 a. The z-axis defines the position where the two
fibers, having a tilt angle δ, are the closest, i.e., when their
axis are separated by a distance 2 h + 2 a.

a capillary bridge and are thus of interest in the present
study.

To consider the different configurations, we use a pair
of identical nylon fibers tilted with an angle δ and sep-
arated by a minimum separation distance h. We show a
schematic of the fiber configuration in fig. 2(b). Each fiber
is held horizontal and clamped at both ends, with one fiber
affixed on a rotating stage (PR01, Thorlabs) with a mi-
crometer drive that allows for the variation of the angle
δ in increments of 0.1◦. The rotating stage is mounted
on a linear translation stage (PT1, Thorlabs) with a mi-
crometer drive that allows for the variation of the verti-
cal closest distance between the fibers h in increments of
5µm. We use various fiber radii a ∈ [100; 225]µm (ny-
lon fibers from Sufix Elite) and separation distances be-
tween fibers h ∈ [0, 6a]. Nylon fibers exhibit micrometer-
scale roughness, but we have not observed any noticeable
hysteresis with perfectly and partially wetting fluids [25].
We perform systematic experiments in the three possi-
ble fiber configurations with silicone oil (5 cSt, density
ρ = 918 kg/m3, surface tension γ = 19.7mN/m, puchased
from Sigma-Aldrich), which is perfectly wetting on the
fibers. The capillary length that describes the scale at
which the gravity effects become noticeable is defined as
ℓc =

√
γ/(ρg), where g is the gravitational constant and

γ is the surface tension. This length is about 1.5mm for

Figure 1: SEM pictures of drops of binder lying on glass
wool. (a) Drop on a single fiber, (b) liquid in the drop
state between two crossed fibers, (c) and (d) liquid in the
column state between two fibers. Scale bars are 10µm
(Pictures from Saint-Gobain Research, reproduced with
permission from Bintein [21]).

understanding the distribution of liquid in an array of
fibers is also critical to the generation of fiber mats used
in glass wool for insulation purpose. In this situation
the glass fibers are stuck together by a binder fluid. The
final properties of the fiber mats are in part controlled
by how the wetting binder fluid is distributed among the
glass wool before its solidification (figure 1a-d). In ad-
dition, glass wool does not swell when in contact with
liquid and we will therefore neglect this effect [21].

Because of challenges in visualizing the microstruc-
tures, fibrous media are complex arrays of fibers that
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are difficult to study experimentally. Therefore seminal
work has focused on the simplest element of an array of
fibers: a pair of straight parallel fibers [22, 23]. These
studies have identified two liquid morphologies. A small
volume of nonvolatile liquid deposited on a pair of par-
allel fibers can adopt a hemispherical drop shape or an
extended column state. Recently, our work on crossed
touching fibers has shown that, in addition to the drop
and column states, the liquid can exist in a third mor-
phology: a composite drop/column state referred to as
the mixed morphology [24]. Analytical models for the
shape of the column state on parallel and crossed touch-
ing fibers have been previously proposed and compared
with experiments.

However, in most fibrous media, the fibers are ran-
domly oriented and spaced, which results in three possi-
ble configurations for neighboring pairs of fibers: parallel
fibers, touching crossed fibers and non-touching crossed
fibers. In considering a global model for fiber arrays, we
thus need to account for the latter case, in which the
fibers are not touching. Indeed, the closest distance be-
tween non-parallel fibers is an additional parameter that
affects the equilibrium morphology of the liquid.

In this paper, we study the wetting morphologies on
a pair of fibers that are randomly oriented and spaced
thus considering a more general situation than previous
work performed on liquid bridges between touching or
parallel fibers. In particular, we characterize the tran-
sitions between the wetting morphologies on a pair of
crossed fibers with respect to four variables: the angle
between the fibers δ, the distance between the fibers h,
the fiber radius a and the volume of liquid V . Thus, the
new model presented in this paper describes the equi-
librium wetting morphologies associated with any fiber
configurations and recovers the results obtained previ-
ously for parallel and touching crossed fibers. We also
highlight the understanding of the liquid morphology be-
tween randomly oriented fibers in a new 3D diagram.
This characterization of equilibrium wetting morpholo-
gies is essential for future studies on the properties of
wet fibrous media including their drying behaviour.

2 Experimental methods

We consider an array of randomly oriented fibers, whose
typical mesh size is large compared to the drop radius,
i.e. an array made of long fibers and with a large porosity,
as illustrated in Fig. 2(a); the notations we will use are
given in Fig. 2(b). A drop of liquid deposited on the
array encounters one of four possible fiber configurations:
at equilibrium the liquid can be located (i) on a single
fiber, (ii) on two parallel fibers (h 6= 0 and δ = 0), (iii)
at the point of contact of two touching crossed fibers
(h = 0 and δ 6= 0), or (iv) at the point of minimum
distance between two non-touching crossed fibers (h 6= 0
and δ 6= 0). Only the three latter configurations result
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Fig. 1. SEM pictures of drops of binder lying on glass wool. (a)
Drop on a single fiber, (b) liquid in the drop state between two
crossed fibers, (c) and (d) liquid in the column state between
two fibers. Scale bars are 10 µm (pictures from Saint-Gobain
Research, reproduced with permission from Bintein [21]).

configurations for neighboring pairs of fibers: parallel
fibers, touching crossed fibers and non-touching crossed
fibers. In considering a global model for fiber arrays, we
thus need to account for the latter case, in which the
fibers are not touching. Indeed, the closest distance be-
tween non-parallel fibers is an additional parameter that
affects the equilibrium morphology of the liquid.

In this paper, we study the wetting morphologies on a
pair of fibers that are randomly oriented and spaced thus
considering a more general situation than previous work
performed on liquid bridges between touching or parallel
fibers. In particular, we characterize the transitions be-
tween the wetting morphologies on a pair of crossed fibers
with respect to four variables: the angle between the fibers
δ, the distance between the fibers h, the fiber radius a and
the volume of liquid V . Thus, the new model presented in
this paper describes the equilibrium wetting morpholo-
gies associated with any fiber configuration and recovers
the results obtained previously for parallel and touching
crossed fibers. We also highlight the understanding of the
liquid morphology between randomly oriented fibers in
a new 3D diagram. This characterization of equilibrium
wetting morphologies is essential for future studies on the
properties of wet fibrous media including their drying be-
haviour.

2 Experimental methods

We consider an array of randomly oriented fibers, whose
typical mesh size is large compared to the drop radius,
i.e. an array made of long fibers and with a large poros-
ity, as illustrated in fig. 2(a); the notations we will use are
given in fig. 2(b). A drop of liquid deposited on the ar-
ray encounters one of four possible fiber configurations: at
equilibrium the liquid can be located i) on a single fiber,
ii) on two parallel fibers (h ̸= 0 and δ = 0), iii) at the
point of contact of two touching crossed fibers (h = 0 and
δ ̸= 0), or iv) at the point of minimum distance between
two non-touching crossed fibers (h ̸= 0 and δ ̸= 0). Only
the three latter configurations result in the formation of

Fig. 2. (a) Representation of an array of randomly oriented
rigid fibers. (b) Schematic of the system composed of two fibers
of radius 2 a. The z-axis defines the position where the two
fibers, having a tilt angle δ, are the closest, i.e., when their
axis are separated by a distance 2 h + 2 a.

a capillary bridge and are thus of interest in the present
study.

To consider the different configurations, we use a pair
of identical nylon fibers tilted with an angle δ and sep-
arated by a minimum separation distance h. We show a
schematic of the fiber configuration in fig. 2(b). Each fiber
is held horizontal and clamped at both ends, with one fiber
affixed on a rotating stage (PR01, Thorlabs) with a mi-
crometer drive that allows for the variation of the angle
δ in increments of 0.1◦. The rotating stage is mounted
on a linear translation stage (PT1, Thorlabs) with a mi-
crometer drive that allows for the variation of the verti-
cal closest distance between the fibers h in increments of
5µm. We use various fiber radii a ∈ [100; 225]µm (ny-
lon fibers from Sufix Elite) and separation distances be-
tween fibers h ∈ [0, 6a]. Nylon fibers exhibit micrometer-
scale roughness, but we have not observed any noticeable
hysteresis with perfectly and partially wetting fluids [25].
We perform systematic experiments in the three possi-
ble fiber configurations with silicone oil (5 cSt, density
ρ = 918 kg/m3, surface tension γ = 19.7mN/m, puchased
from Sigma-Aldrich), which is perfectly wetting on the
fibers. The capillary length that describes the scale at
which the gravity effects become noticeable is defined as
ℓc =

√
γ/(ρg), where g is the gravitational constant and

γ is the surface tension. This length is about 1.5mm for

(a)
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Fig. 1. SEM pictures of drops of binder lying on glass wool. (a)
Drop on a single fiber, (b) liquid in the drop state between two
crossed fibers, (c) and (d) liquid in the column state between
two fibers. Scale bars are 10 µm (pictures from Saint-Gobain
Research, reproduced with permission from Bintein [21]).

configurations for neighboring pairs of fibers: parallel
fibers, touching crossed fibers and non-touching crossed
fibers. In considering a global model for fiber arrays, we
thus need to account for the latter case, in which the
fibers are not touching. Indeed, the closest distance be-
tween non-parallel fibers is an additional parameter that
affects the equilibrium morphology of the liquid.

In this paper, we study the wetting morphologies on a
pair of fibers that are randomly oriented and spaced thus
considering a more general situation than previous work
performed on liquid bridges between touching or parallel
fibers. In particular, we characterize the transitions be-
tween the wetting morphologies on a pair of crossed fibers
with respect to four variables: the angle between the fibers
δ, the distance between the fibers h, the fiber radius a and
the volume of liquid V . Thus, the new model presented in
this paper describes the equilibrium wetting morpholo-
gies associated with any fiber configuration and recovers
the results obtained previously for parallel and touching
crossed fibers. We also highlight the understanding of the
liquid morphology between randomly oriented fibers in
a new 3D diagram. This characterization of equilibrium
wetting morphologies is essential for future studies on the
properties of wet fibrous media including their drying be-
haviour.

2 Experimental methods

We consider an array of randomly oriented fibers, whose
typical mesh size is large compared to the drop radius,
i.e. an array made of long fibers and with a large poros-
ity, as illustrated in fig. 2(a); the notations we will use are
given in fig. 2(b). A drop of liquid deposited on the ar-
ray encounters one of four possible fiber configurations: at
equilibrium the liquid can be located i) on a single fiber,
ii) on two parallel fibers (h ̸= 0 and δ = 0), iii) at the
point of contact of two touching crossed fibers (h = 0 and
δ ̸= 0), or iv) at the point of minimum distance between
two non-touching crossed fibers (h ̸= 0 and δ ̸= 0). Only
the three latter configurations result in the formation of

Fig. 2. (a) Representation of an array of randomly oriented
rigid fibers. (b) Schematic of the system composed of two fibers
of radius 2 a. The z-axis defines the position where the two
fibers, having a tilt angle δ, are the closest, i.e., when their
axis are separated by a distance 2 h + 2 a.

a capillary bridge and are thus of interest in the present
study.

To consider the different configurations, we use a pair
of identical nylon fibers tilted with an angle δ and sep-
arated by a minimum separation distance h. We show a
schematic of the fiber configuration in fig. 2(b). Each fiber
is held horizontal and clamped at both ends, with one fiber
affixed on a rotating stage (PR01, Thorlabs) with a mi-
crometer drive that allows for the variation of the angle
δ in increments of 0.1◦. The rotating stage is mounted
on a linear translation stage (PT1, Thorlabs) with a mi-
crometer drive that allows for the variation of the verti-
cal closest distance between the fibers h in increments of
5µm. We use various fiber radii a ∈ [100; 225]µm (ny-
lon fibers from Sufix Elite) and separation distances be-
tween fibers h ∈ [0, 6a]. Nylon fibers exhibit micrometer-
scale roughness, but we have not observed any noticeable
hysteresis with perfectly and partially wetting fluids [25].
We perform systematic experiments in the three possi-
ble fiber configurations with silicone oil (5 cSt, density
ρ = 918 kg/m3, surface tension γ = 19.7mN/m, puchased
from Sigma-Aldrich), which is perfectly wetting on the
fibers. The capillary length that describes the scale at
which the gravity effects become noticeable is defined as
ℓc =

√
γ/(ρg), where g is the gravitational constant and

γ is the surface tension. This length is about 1.5mm for

(b)

Figure 2: (a) Representation of an array of randomly ori-
ented rigid fibers. (b) Schematic of the system composed
of two fibers of radius 2 a. The z-axis defines the posi-
tion where the two fibers, having a tilt angle δ, are the
closest, i.e., when their axis are separated by a distance
2h+ 2 a.

in the formation of a capillary bridge and are thus of
interest in the present study.

To consider the different configurations, we use a pair
of identical nylon fibers tilted with an angle δ and sepa-
rated by a minimum separation distance h. We show a
schematic of the fiber configuration in Fig. 2(b). Each
fiber is held horizontal and clamped at both ends, with
one fiber affixed on a rotating stage (PR01, Thorlabs)
with a micrometer drive that allows for the variation of
the angle δ in increments of 0.1◦. The rotating stage
is mounted on a linear translation stage (PT1, Thor-
labs) with a micrometer drive that allows for the varia-
tion of the vertical closest distance between the fibers
h in increments of 5 µm. We use various fiber radii
a ∈ [100; 225]µm (nylon fibers from Sufix Elite) and
separation distances between fibers h ∈ [0, 6 a]. Nylon
fibers exhibit micrometer-scale roughness, but we have
not observed any noticeable hysteresis with perfectly and
partially wetting fluids [25]. We perform systematic ex-
periments in the three possible fiber configurations with
silicone oil (5 cSt, density ρ = 918 kg/m3, surface tension
γ = 19.7 mN/m, puchased from Sigma-Aldrich), which is
perfectly wetting on the fibers. The capillary length that
describes the scale at which the gravity effects become
noticeable is defined as `c =

√
γ/(ρ g), where g is the

gravitational constant and γ is the surface tension. This
length is about 1.5 mm for silicone oil. As this capillary
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length is usually larger than the typical height H of the
liquid in our experiments, we first assume that gravity ef-
fects can be neglected. We shall discuss this assumption
when large volumes of fluid and/or large fibers are used,

as the Bond number of the system, Bo = ρ g (2 a)
2
/γ,

becomes larger than one.

In a typical experiment, we dispense a known volume
V ∈ [0.5; 8]µ` of liquid using a micropipette (Eppen-
dorf) on a pair of crossed fibers separated vertically by
a separation distance h. We increase the angle between
the fibers incrementally until δ ' 90◦ and then decrease
δ incrementally. For each step in δ, the equilibrium state
of the liquid is captured from the top and the side views
with cameras (Nikon cameras D5100 and D7100 and 105
mm macro objectives) as illustrated in Figs. 3 and 4.
The top view allows the measurement of the angle be-
tween the fibers and wetting length, while the side view
permits the measurement of the separation distance be-
tween the fibers and the discrimination between the dif-
ferent states. Three possible liquid morphologies are ob-
served: the drop state, the mixed morphology and the
column state. In the drop state, the liquid collects in
a single drop centered on the point where the distance
between the fibers is the smallest, i.e. the node. The
column morphology corresponds to the spreading of the
liquid along the fibers. In this morphology, the height
of the liquid remains of the same order of magnitude
as the separation distance between the fibers. Finally,
the mixed morphology is defined by the coexistence of a
column and a drop lying at one end of a column. The
position of the drop, i.e. the side of the column where
it is located, is random and due to external noise when
changing the tilting angle or the inter-fiber separation.

Experimentally, as the angle between the fibers is in-
creased (Fig. 3), the length of the column of liquid de-
creases and the liquid switches to a mixed morphology.
As the angle between the fibers is further increased, the
liquid configuration becomes a drop. Then, when de-
creasing the angle between the fibers, the drop reverts
back to the mixed morphology and eventually elongates
into a column. We can also keep the tilt angle δ con-
stant and increase the separation distance h (Fig. 4).
For the particular case of parallel fibers (δ = 0), we in-
crease the separation distance h incrementally until the
drop morphology is observed. The same procedure is fol-
lowed to measure the separation distance and to observe
the liquid morphology. The change of morphology be-
tween the column and the drop state can be observed
in the plane defined by the two fibers. Indeed, as h in-
creases, the transition occurs when the liquid overspills
the fibers. At the transition, the liquid collects in a drop.
For instance, the morphology can be discriminated be-
tween figures 4(e) and 4(f).
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Fig. 5. Schematic and notations of the system composed of
two fibers of radius 2 a. (a) Top view and (b) cross-section
view.

a column. We can also keep the tilt angle δ constant and
increase the separation distance h (fig. 4). For the partic-
ular case of parallel fibers (δ = 0), we increase the separa-
tion distance h incrementally until the drop morphology is
observed. The same procedure is followed to measure the
separation distance and to observe the liquid morphology.
The change of morphology between the column and the
drop state can be observed in the plane defined by the two
fibers. Indeed, as h increases, the transition occurs when
the liquid overspills the fibers. At the transition, the liq-
uid collects in a drop. For instance, the morphology can
be discriminated between figs. 4(e) and (f).

3 Analytical modeling

We consider two rigid fibers having a cylindrical cross-
section, separated by a minimum distance h and tilted by
an angle δ. We can define a system of coordinates Oxyz
as represented schematically in fig. 5. When needed, we
use the fiber radius a to construct dimensionless param-
eters: the dimensionless inter-fiber distance d̃ = d/a, the

dimensionless spacing distance h̃ = h/a, the dimensionless

wetting length L̃ = L/a, the dimensionless cross-sectional

area Ã = A/a2 and the dimensionless volume Ṽ = V/a3.
Provided that the fibers are not parallel, i.e. that the tilt-
ing angle is not zero, a drop of liquid lying on two fibers
will travel towards the point where the fibers are the clos-
est, which we refer to as the “kissing point” if the fibers
are in contact.

We consider a liquid that has a contact angle θE and
is in a column state on a pair of fibers characterized by
(δ, h, a). This morphology consists of a long column of
liquid, with varying cross-section and a constant height.

The shape of the surface of the cross-section of the column
is defined by its dimensionless radius of curvature R̃ =
R/a and the angle between the line connecting the centers
of the fibers and the radius to the liquid-fiber-air boundary
α (fig. 5(b)). We define the equilibrium configuration of
the general situation of two fibers that are not in contact,
i.e. separated by a minimum distance h > 0 and tilted
with an angle δ > 0.

The inter-fiber distance, 2 d(y), varies as a function of
the distance y to the point O where the two fibers are the
closest (fig. 5(a)). ∆x is the distance between the axes of
the two fibers projected in the plane (x y), and 2h + 2 a
is the closest distance between the axes of the two fibers.
We have

(∆x)2 + 4(a+h)2 =4[d(y) + a]2 and tan

(
δ

2

)
=

∆x

2y
.

(1)
Using these two expressions, we obtain

d̃(y) =
d(y)

a
=

[
ỹ2 tan2

(
δ

2

)
+ (1 + h̃)2

]1/2

− 1, (2)

where ỹ = y/a.

We observe that for δ = 0 and h̃ > 0, we recover
the expression derived by Princen for parallel fibers [22],

whereas for h̃ = 0 and δ > 0 we obtain the situation of
touching crossed fibers [24]. Using geometrical arguments,

we define the radius of curvature R̃,

R̃ =
R

a
=

1 + d̃ − cos α

cos(α + θE)
, (3)

and the liquid cross-sectional area,

Ã =
A

a2
= R̃2[2α + 2θE − π + sin[2 (α + θE)]]

+ 4 R̃ sin α cos(α + θE) − 2α + sin(2α). (4)

To determine analytically the cross-sectional shape of
the column morphology at the equilibrium, we assume
that at each distance ỹ from the “kissing” point, the cross-
sectional shape only depends on the distance between the
two fibers, d̃(ỹ) and on the contact angle θE . A force bal-
ance on an infinitesimal volume dV = AdL leads to the
equilibrium condition [24]

4
[(π

2
− α − θE

)
R̃ − α cos θE

]
+

Ã

R̃
= 0. (5)

Substituting the expression of Ã given by the rela-
tion (4) in eq. (5) leads to a quadratic equation for the

radius of curvature R̃ [22]:

R̃2[π − 2α − 2θE + sin[2(α + θE)]] − 2α + sin(2α)

+ 4R̃[sin α cos(α + θE) − α cos θE ] = 0. (6)

Therefore, for a given liquid, i.e. a specified value of the
contact angle θE , eq. (6) can be solved to obtain the di-

mensionless radius of curvature R̃ as a function of α.

(a)
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a column. We can also keep the tilt angle δ constant and
increase the separation distance h (fig. 4). For the partic-
ular case of parallel fibers (δ = 0), we increase the separa-
tion distance h incrementally until the drop morphology is
observed. The same procedure is followed to measure the
separation distance and to observe the liquid morphology.
The change of morphology between the column and the
drop state can be observed in the plane defined by the two
fibers. Indeed, as h increases, the transition occurs when
the liquid overspills the fibers. At the transition, the liq-
uid collects in a drop. For instance, the morphology can
be discriminated between figs. 4(e) and (f).

3 Analytical modeling

We consider two rigid fibers having a cylindrical cross-
section, separated by a minimum distance h and tilted by
an angle δ. We can define a system of coordinates Oxyz
as represented schematically in fig. 5. When needed, we
use the fiber radius a to construct dimensionless param-
eters: the dimensionless inter-fiber distance d̃ = d/a, the
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wetting length L̃ = L/a, the dimensionless cross-sectional

area Ã = A/a2 and the dimensionless volume Ṽ = V/a3.
Provided that the fibers are not parallel, i.e. that the tilt-
ing angle is not zero, a drop of liquid lying on two fibers
will travel towards the point where the fibers are the clos-
est, which we refer to as the “kissing point” if the fibers
are in contact.

We consider a liquid that has a contact angle θE and
is in a column state on a pair of fibers characterized by
(δ, h, a). This morphology consists of a long column of
liquid, with varying cross-section and a constant height.

The shape of the surface of the cross-section of the column
is defined by its dimensionless radius of curvature R̃ =
R/a and the angle between the line connecting the centers
of the fibers and the radius to the liquid-fiber-air boundary
α (fig. 5(b)). We define the equilibrium configuration of
the general situation of two fibers that are not in contact,
i.e. separated by a minimum distance h > 0 and tilted
with an angle δ > 0.

The inter-fiber distance, 2 d(y), varies as a function of
the distance y to the point O where the two fibers are the
closest (fig. 5(a)). ∆x is the distance between the axes of
the two fibers projected in the plane (x y), and 2h + 2 a
is the closest distance between the axes of the two fibers.
We have

(∆x)2 + 4(a+h)2 =4[d(y) + a]2 and tan

(
δ

2

)
=

∆x

2y
.

(1)
Using these two expressions, we obtain

d̃(y) =
d(y)

a
=

[
ỹ2 tan2

(
δ

2

)
+ (1 + h̃)2

]1/2

− 1, (2)

where ỹ = y/a.

We observe that for δ = 0 and h̃ > 0, we recover
the expression derived by Princen for parallel fibers [22],

whereas for h̃ = 0 and δ > 0 we obtain the situation of
touching crossed fibers [24]. Using geometrical arguments,

we define the radius of curvature R̃,

R̃ =
R

a
=

1 + d̃ − cos α

cos(α + θE)
, (3)

and the liquid cross-sectional area,

Ã =
A

a2
= R̃2[2α + 2θE − π + sin[2 (α + θE)]]

+ 4 R̃ sin α cos(α + θE) − 2α + sin(2α). (4)

To determine analytically the cross-sectional shape of
the column morphology at the equilibrium, we assume
that at each distance ỹ from the “kissing” point, the cross-
sectional shape only depends on the distance between the
two fibers, d̃(ỹ) and on the contact angle θE . A force bal-
ance on an infinitesimal volume dV = AdL leads to the
equilibrium condition [24]

4
[(π

2
− α − θE

)
R̃ − α cos θE

]
+

Ã

R̃
= 0. (5)

Substituting the expression of Ã given by the rela-
tion (4) in eq. (5) leads to a quadratic equation for the

radius of curvature R̃ [22]:

R̃2[π − 2α − 2θE + sin[2(α + θE)]] − 2α + sin(2α)

+ 4R̃[sin α cos(α + θE) − α cos θE ] = 0. (6)

Therefore, for a given liquid, i.e. a specified value of the
contact angle θE , eq. (6) can be solved to obtain the di-

mensionless radius of curvature R̃ as a function of α.

(b)

Figure 5: Schematic and notations of the system com-
posed of two fibers of radius 2 a. (a) Top view and (b)
cross-section view.

3 Analytical modeling

We consider two rigid fibers having a cylindrical cross-
section, separated by a minimum distance h and tilted by
an angle δ. We can define a system of coordinates Oxyz
as represented schematically in Fig. 5. When needed,
we use the fiber radius a to construct dimensionless pa-
rameters: the dimensionless inter-fiber distance d̃ = d/a,
the dimensionless spacing distance h̃ = h/a, the dimen-
sionless wetting length L̃ = L/a, the dimensionless cross-
sectional area Ã = A/a2 and the dimensionless volume
Ṽ = V/a3. Provided that the fibers are not parallel, i.e.
that the tilting angle is not zero, a drop of liquid lying on
two fibers will travel towards the point where the fibers
are the closest, which we refer to as the “kissing point”
if the fibers are in contact.

We consider a liquid that has a contact angle θE and
is in a column state on a pair of fibers characterized by
(δ, h, a). This morphology consists of a long column of
liquid, with varying cross-section and a constant height.
The shape of the surface of the cross-section of the col-
umn is defined by its dimensionless radius of curvature
R̃ = R/a and the angle between the line connecting the
centers of the fibers and the radius to the liquid-fiber-
air boundary α [Fig. 5(b)]. We define the equilibrium
configuration of the general situation of two fibers that
are not in contact, i.e. separated by a minimum distance
h > 0 and tilted with an angle δ > 0.

The inter-fiber distance, 2 d(y), varies as a function of
the distance y to the point O where the two fibers are
the closest [Fig. 5(a)]. ∆x is the distance between the
axes of the two fibers projected in the plane (x y), and
2h + 2 a is the closest distance between the axes of the
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Fig. 3. Evolution of the morphology of a drop of volume V = 2 µℓ of silicone oil (5 cSt) on two touching crossed fibers (h = 0)
of radius a = 150 µm as the angle δ between the fibers is varied: top (left) and side (right) views. The liquid starts in a column
state for a small tilting angle, (a) δ = 4◦. As the angle is increased, a mixed morphology is observed: (b) δ = 9◦, (c) δ = 15◦,
(d) δ = 25◦ and (e) δ = 35◦. Finally, at larger angles, (f) δ = 45◦, a drop lies at the crossing point of the fibers. Scale bars are
5 mm.

Fig. 4. Evolution of the morphology of a drop of volume V = 2 µℓ of silicone oil (5 cSt) on two non-touching crossed fibers of
radius a = 150 µm, tilted by an angle δ = 4◦ as the distance h between the fibers is increased: top (left) and side (right) views.
The liquid starts in a column state at small separation distances, (a) h = 0. As the distance h is increased, the liquid adopts a
drop morphology (f)-(g). Scale bars are 5 mm.

silicone oil. As this capillary length is usually larger than
the typical height H of the liquid in our experiments, we
first assume that gravity effects can be neglected. We shall
discuss this assumption when large volumes of fluid and/or
large fibers are used, as the Bond number of the system,
Bo = ρg(2a)2/γ, becomes larger than one.

In a typical experiment, we dispense a known volume
V ∈ [0.5; 8]µℓ of liquid using a micropipette (Eppendorf)
on a pair of crossed fibers separated vertically by a separa-
tion distance h. We increase the angle between the fibers
incrementally until δ ≃ 90◦ and then decrease δ incre-
mentally. For each step in δ, the equilibrium state of the
liquid is captured from the top and the side views with
cameras (Nikon cameras D5100 and D7100 and 105 mm
macro objectives) as illustrated in figs. 3 and 4. The top
view allows the measurement of the angle between the
fibers and wetting length, while the side view permits the
measurement of the separation distance between the fibers
and the discrimination between the different states. Three
possible liquid morphologies are observed: the drop state,

the mixed morphology and the column state. In the drop
state, the liquid collects in a single drop centered on the
point where the distance between the fibers is the small-
est, i.e. the node. The column morphology corresponds to
the spreading of the liquid along the fibers. In this mor-
phology, the height of the liquid remains of the same or-
der of magnitude as the separation distance between the
fibers. Finally, the mixed morphology is defined by the
coexistence of a column and a drop lying at one end of
a column. The position of the drop, i.e. the side of the
column where it is located, is random and due to exter-
nal noise when changing the tilting angle or the inter-fiber
separation.

Experimentally, as the angle between the fibers is in-
creased (fig. 3), the length of the column of liquid de-
creases and the liquid switches to a mixed morphology.
As the angle between the fibers is further increased, the
liquid configuration becomes a drop. Then, when decreas-
ing the angle between the fibers, the drop reverts back
to the mixed morphology and eventually elongates into

Figure 3: Evolution of the morphology of a drop of volume V = 2µ` of silicone oil (5 cSt) on two touching crossed
fibers (h = 0) of radius a = 150µm as the angle δ between the fibers is varied: top (left) and side (right) views. The
liquid starts in a column state for a small tilting angle, (a) δ = 4o. As the angle is increased, a mixed morphology
is observed: (b) δ = 9o, (c) δ = 15o, (d) δ = 25o and (e) δ = 35o. Finally, at larger angles, (f) δ = 45o, a drop lies
at the crossing point of the fibers. Scale bars are 5 mm.
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silicone oil. As this capillary length is usually larger than
the typical height H of the liquid in our experiments, we
first assume that gravity effects can be neglected. We shall
discuss this assumption when large volumes of fluid and/or
large fibers are used, as the Bond number of the system,
Bo = ρg(2a)2/γ, becomes larger than one.

In a typical experiment, we dispense a known volume
V ∈ [0.5; 8]µℓ of liquid using a micropipette (Eppendorf)
on a pair of crossed fibers separated vertically by a separa-
tion distance h. We increase the angle between the fibers
incrementally until δ ≃ 90◦ and then decrease δ incre-
mentally. For each step in δ, the equilibrium state of the
liquid is captured from the top and the side views with
cameras (Nikon cameras D5100 and D7100 and 105 mm
macro objectives) as illustrated in figs. 3 and 4. The top
view allows the measurement of the angle between the
fibers and wetting length, while the side view permits the
measurement of the separation distance between the fibers
and the discrimination between the different states. Three
possible liquid morphologies are observed: the drop state,

the mixed morphology and the column state. In the drop
state, the liquid collects in a single drop centered on the
point where the distance between the fibers is the small-
est, i.e. the node. The column morphology corresponds to
the spreading of the liquid along the fibers. In this mor-
phology, the height of the liquid remains of the same or-
der of magnitude as the separation distance between the
fibers. Finally, the mixed morphology is defined by the
coexistence of a column and a drop lying at one end of
a column. The position of the drop, i.e. the side of the
column where it is located, is random and due to exter-
nal noise when changing the tilting angle or the inter-fiber
separation.

Experimentally, as the angle between the fibers is in-
creased (fig. 3), the length of the column of liquid de-
creases and the liquid switches to a mixed morphology.
As the angle between the fibers is further increased, the
liquid configuration becomes a drop. Then, when decreas-
ing the angle between the fibers, the drop reverts back
to the mixed morphology and eventually elongates into

Figure 4: Evolution of the morphology of a drop of volume V = 2µ` of silicone oil (5 cSt) on two non-touching
crossed fibers of radius a = 150µm, tilted by an angle δ = 4o as the distance h between the fibers is increased: top
(left) and side (right) views. The liquid starts in a column state at small separation distances, (a) h = 0. As the
distance h is increased, the liquid adopts a drop morphology (f)-(g). Scale bars are 5 mm.
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two fibers. We have

(∆x)
2
+4 (a+h)2 = 4 [d(y) + a]

2
and tan

(
δ

2

)
=

∆x

2 y
.

(1)
Using these two expressions, we obtain

d̃(y) =
d(y)

a
=

[
ỹ2 tan2

(
δ

2

)
+ (1 + h̃)2

]1/2
− 1, (2)

where ỹ = y/a.
We observe that for δ = 0 and h̃ > 0, we recover

the expression derived by Princen for parallel fibers [22],
whereas for h̃ = 0 and δ > 0 we obtain the situation
of touching crossed fibers [24]. Using geometrical argu-
ments, we define the radius of curvature R̃,

R̃ =
R

a
=

1 + d̃− cosα

cos(α+ θE)
, (3)

and the liquid cross-sectional area,

Ã =
A

a2
= R̃2

[
2α+ 2 θE − π + sin[2 (α+ θE)]

]

+4 R̃ sinα cos(α+ θE)− 2α+ sin(2α).(4)

To determine analytically the cross-sectional shape of
the column morphology at the equilibrium, we assume
that at each distance ỹ from the “kissing” point, the
cross-sectional shape only depends on the distance be-
tween the two fibers, d̃(ỹ) and on the contact angle θE .
A force balance on an infinitesimal volume dV = A dL
leads to the equilibrium condition [24]:

4
[(π

2
− α− θE

)
R̃− α cos θE

]
+
Ã

R̃
= 0. (5)

Substituting the expression of Ã given by the relation
(4) in equation (5) leads to a quadratic equation for the
radius of curvature R̃ [22]:

R̃2
[
π − 2α− 2 θE + sin[2 (α+ θE)]

]
− 2α+ sin(2α)

+4 R̃
[
sinα cos(α+ θE)− α cos θE

]
= 0. (6)

Therefore, for a given liquid, i.e. a specified value of
the contact angle θE , equation (6) can be solved to obtain
the dimensionless radius of curvature R̃ as a function of
α.

For the particular case of a perfectly wetting liquid
(θE = 0), we obtain a simple expression of R̃ using equa-
tion (6) [26, 24]. Substituting this expression in equation
(3) and with equations (2), we obtain a direct relation
between ỹ and α:

√
ỹ2 tan2

(
δ

2

)
+
(

1 + h̃
)2

=

(
1 +

[√
π

2α− sin(2α)
− 1

]−1
)

cosα.(7)

For δ = 0, we recover from equation (7) the expres-
sion derived by Princen [22] and Protière et al. [26] to
describe the liquid morphology on parallel fibers. For
h̃ = 0, we obtain the expression derived by Sauret et al.
for touching crossed fibers [24].

To determine the maximum volume of fluid that can
be contained in a column morphology that is a symmetric
state, we consider the expression of the volume of liquid
lying on the fibers in this morphology:

Ṽ =

∫ L̃

−L̃

Ã(ỹ) dỹ, (8)

where Ã(ỹ) is the cross-sectional area and L̃ the half-
length of the column. Imposing a constraint on the vol-
ume of liquid Ṽ leads to a unique value of the wetted
length 2 L̃.

In addition, solving the quadratic equation (6) for R̃
and substituting the solution in relation (3), we observe
that d̃ reaches a maximum value d̃max when varying α
for a given θE . Therefore, if the local inter-fiber distance
d̃(ỹ) is larger than d̃max, the column state cannot exist.
This condition defines the maximum length of a liquid
column state, since this corresponds to d̃(L̃max) = d̃max.
Using relation (2), we write the maximum spreading
length:

L̃max =

[
(1 + d̃max)2 − (1 + h̃)2

]1/2

tan(δ/2)
. (9)

We observe that the wetting length increases when de-
creasing the tilting angle δ and the separation distance h̃.
Note in particular that for touching crossed fibers (h̃ = 0)
and a perfectly wetting liquid, we have d̃max =

√
2.

For a given separation distance h̃ and tilt angle δ, the
maximum wetting length defines the maximum volume
of the column and thus the regime of existence of the
column state. Indeed, the maximum volume of liquid
that can be at equilibrium in a column state is defined
by

Ṽmax =

∫ L̃max

−L̃max

Ã(ỹ) dỹ. (10)

For a volume of liquid Ṽ larger than Ṽmax, the liq-
uid would not be able to spread in a column state and
could be either in a mixed morphology or in a drop state
as we shall see in the following. However, even for a
volume of liquid Ṽ < Ṽmax, we need to compare the
surface energies of all possible morphologies defined as
E = γ ALV − γ cos θE ASL where ALV and ASL are the
liquid-air and liquid-fiber surface areas. These energies
are minimized to determine which morphology will be
preferentially adopted by the liquid.

The transition between the drop state and the mixed
morphology is more complex as the shape of the drop
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between two fibers does not have an analytical descrip-
tion. We assume that the surface energy associated with
the drop morphology is that of a sphere of equivalent
radius [3 Ṽ /(4π)]1/3, pierced by two fibers. Note that
Protière et al. [26] show that a better quantitative agree-
ment between theoretical and experimental results can
be obtained by modeling the drop with a shape close to
a hemisphere with an energy equal to :

Ẽdrop =
Edrop

γ a2
= 0.6

[
(36π)1/3 Ṽ 2/3 − π

√(
6 Ṽ /π

)2/3
− 4 d̃2

]
,

(11)
where the pre-factor 0.6 is empirical and takes into ac-
count that the shape of the liquid in the drop state is
not exactly a sphere. The corresponding surface energy
associated with the column morphology is

Ẽcol =
Ecol

γ a2
= 4

∫ L̃

−L̃

[
R̃
(π

2
− θE − α

)
− α cos θE

]
dỹ

(12)
Note that this formulation allows us to recover the ex-
pression previously obtained for two parallel fibers[26] as
in this situation α and R̃ are constant along the column
and the energy reduces to

Ẽcol = 8 L̃
[ (π

2
− θE − α

)
R̃− α cos θE

]
. (13)

In the present situation, we evaluate equation (12) nu-
merically using the expressions for α and R̃ obtained in
the previous section for varying distance d̃(y) between
the fibers similarly to the derivation by Sauret et al. [24].
The drop shape on a pair of fibers is much more com-
plex to describe as there is no analytical expression that
captures the shape of the drop.

In addition, we also need to impose a constraint on
the volume: the liquid can be either in a column mor-
phology Ṽcol, in a drop morphology Ṽdrop or in a mixed

state but the total volume of liquid Ṽ should always sat-
isfy Ṽ = Ṽcol + Ṽdrop. The dimensionless energy Ẽ of

the system Ẽ = Ẽcol + Ẽdrop reaches a minimum for a

given volume Ṽ , a given tilt angle δ and a given sepa-
ration distance h̃. In addition, we assume that there is
no activation barrier between the various morphologies.
By doing so, we observe qualitatively the transition be-
tween the mixed morphology and the drop state but no
quantitative evolution can be obtained. Therefore, this
transition is captured experimentally only.

4 Morphology diagrams

4.1 Parallel fibers

We first conducted experiments with drops of silicone
oil on parallel nylon fibers to verify the analytical model
for perfectly wetting liquids. The experimental results
are reported in Fig. 6 in a morphology diagram of h̃
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Fig. 6. Morphology diagram in the parameter space (Ṽ , h̃)
using silicone oil (θE = 0◦) on parallel fibers (δ = 0◦) of radii
a = [100, 150, 230] µm and a volume of liquid V ∈ [0.5, 4] µℓ.
Red circles show the drop morphology and blue squares the
column morphology. The light orange region corresponds to the
region where both morphologies are observed. The horizontal
solid line corresponds to the theoretical maximum separation
distance where the column state is possible, d̃max =

√
2.

4 Morphology diagrams

4.1 Parallel fibers

We first conducted experiments with drops of silicone oil
on parallel nylon fibers to verify the analytical model for
perfectly wetting liquids. The experimental results are re-
ported in fig. 6 in a morphology diagram of h̃ as a func-
tion of Ṽ (the results for dodecane, i.e., a partially wet-
ting liquid are reported in the appendix). We find that
the drop-column transition occurs for the maximum sepa-
ration h̃ = d̃max =

√
2, which is in agreement with the

analytical solution derived in the previous section and
consistent with previous experimental results obtained for
this geometry. For larger volumes of liquid, Ṽ > 400, we
observe a coexistence region in which for a given h̃ and
Ṽ the liquid can either be in a drop state or a column
morphology. This coexistence region widens with increas-
ing volumes. The coexistence region was also observed by
Protière et al. [26]

We can understand the coexistence region by consid-
ering the Bond number of the system, defined as Bo =
ρ g(2 a)2/γ, where g is the gravitational constant, 2 a is
a characteristic length scale associated to the separation
distance and γ is the surface tension. The Bond number
describes the relative influence of the gravitational force
relative to surface tension effects. Within the coexistence
region, we generally find Bo > 1, which is an indication
that the effects of gravity on the liquid cannot be ne-
glected. Gravity can hinder the liquid from spreading into
the more stable configuration, i.e. the column state, which
results in the coexistence region observed. However, cap-
turing quantitatively this transition would require numer-
ical simulations to define the shape of a drop and a column
in the presence of gravity, which is out of the scope of the

Fig. 7. Morphology diagram for touching crossed fibers of radii
a = [100, 150, 180, 230] µm in the parameter space (Ṽ , δ) using
a volume V ∈ [0.5, 7] µℓ of silicone oil (θE = 0◦). Red circles
show the drop morphology, blue squares the column morphol-
ogy and yellow diamonds are the mixed morphology. The light
orange region corresponds to the parameters where both drop
and the mixed morphology are observed. The solid line corre-
sponds to the theoretical maximum angle, for a given volume
Ṽ , below which the column state is possible.

present study. Our studies have been performed in an hor-
izontal plane, but we can infer that gravitational effects
on the parameters space of the drop could be modified
slightly when this plane is tilted.

4.2 Touching crossed fibers

We then perform experiments with two touching crossed
fibers (h̃ = 0 and δ > 0) to further explore the validity of
the analytical model for liquids with zero contact angle.
We report the observed morphologies in fig. 7. The column
morphology is observed at small enough tilt angle δ or
rescaled volume Ṽ . On the morphology diagram, we also
plot the analytical prediction for the transition between
the column state and the two other morphologies, which
represents the volume Vmax beyond which a column state
cannot exist between crossed fibers (see eq. (10)). We ob-
serve a good agreement between the analytical prediction
and the experimental results.

The transition between the mixed morphology and
drop state is not captured by an analytical expression as
the exact shape of the drop is not known and because of
the rough estimate of eq. (11). Our experimental results,
however, indicate a coexistence region (light orange in the
diagram) where both the mixed and the drop morpholo-
gies are present. The transitions from the mixed morphol-
ogy to the coexistence region and from the coexistence
region to the drop state appear to be independent of the
Ṽ for Ṽ > 100. We can estimate the Bond number at
which the transition between the mixed and drop states
occurs. The results suggest that the transition between the
mixed and drop morphologies is also independent of the
Bond number. It is possible, however, that the transition

Figure 6: Morphology diagram in the parameter space
(Ṽ , h̃) using silicone oil (θE = 0 ◦) on parallel fibers
(δ = 0 ◦) of radii a = [100, 150, 230]µm and a volume
of liquid V ∈ [0.5, 4]µ`. Red circles show the drop mor-
phology and blue squares the column morphology. The
light orange region corresponds to the region where both
morphologies are observed. The horizontal solid line cor-
responds to the theoretical maximum separation distance
where the column state is possible, d̃max =

√
2.

as a function of Ṽ (the results for dodecane, i.e, a par-
tially wetting liquid are reported in the appendix). We
find that the drop-column transition occurs for the max-
imum separation h̃ = d̃max =

√
2, which is in agreement

with the analytical solution derived in the previous sec-
tion and consistent with previous experimental results
obtained for this geometry. For larger volumes of liquid,
Ṽ > 400, we observe a coexistence region in which for a
given h̃ and Ṽ the liquid can either be in a drop state
or a column morphology. This coexistence region widens
with increasing volumes. The coexistence region was also
observed by Protière et al. [26]

We can understand the coexistence region by con-
sidering the Bond number of the system, defined as
Bo = ρ g (2 a)

2
/γ, where g is the gravitational constant,

2 a is a characteristic length scale associated to the sep-
aration distance and γ is the surface tension. The Bond
number describes the relative influence of the gravita-
tional force relative to surface tension effects. Within
the coexistence region, we generally find Bo > 1, which
is an indication that the effects of gravity on the liquid
cannot be neglected. Gravity can hinder the liquid from
spreading into the more stable configuration, i.e. the
column state, which results in the coexistence region ob-
served. However, capturing quantitatively this transition
would require numerical simulations to define the shape
of a drop and a column in the presence of gravity, which
is out of the scope of the present study. Our studies have
been performed in an horizontal plane, but we can infer
that gravitational effects on the parameters space of the
drop could be modified slightly when this plane is tilted.
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4 Morphology diagrams

4.1 Parallel fibers

We first conducted experiments with drops of silicone oil
on parallel nylon fibers to verify the analytical model for
perfectly wetting liquids. The experimental results are re-
ported in fig. 6 in a morphology diagram of h̃ as a func-
tion of Ṽ (the results for dodecane, i.e., a partially wet-
ting liquid are reported in the appendix). We find that
the drop-column transition occurs for the maximum sepa-
ration h̃ = d̃max =

√
2, which is in agreement with the

analytical solution derived in the previous section and
consistent with previous experimental results obtained for
this geometry. For larger volumes of liquid, Ṽ > 400, we
observe a coexistence region in which for a given h̃ and
Ṽ the liquid can either be in a drop state or a column
morphology. This coexistence region widens with increas-
ing volumes. The coexistence region was also observed by
Protière et al. [26]

We can understand the coexistence region by consid-
ering the Bond number of the system, defined as Bo =
ρ g(2 a)2/γ, where g is the gravitational constant, 2 a is
a characteristic length scale associated to the separation
distance and γ is the surface tension. The Bond number
describes the relative influence of the gravitational force
relative to surface tension effects. Within the coexistence
region, we generally find Bo > 1, which is an indication
that the effects of gravity on the liquid cannot be ne-
glected. Gravity can hinder the liquid from spreading into
the more stable configuration, i.e. the column state, which
results in the coexistence region observed. However, cap-
turing quantitatively this transition would require numer-
ical simulations to define the shape of a drop and a column
in the presence of gravity, which is out of the scope of the

Fig. 7. Morphology diagram for touching crossed fibers of radii
a = [100, 150, 180, 230] µm in the parameter space (Ṽ , δ) using
a volume V ∈ [0.5, 7] µℓ of silicone oil (θE = 0◦). Red circles
show the drop morphology, blue squares the column morphol-
ogy and yellow diamonds are the mixed morphology. The light
orange region corresponds to the parameters where both drop
and the mixed morphology are observed. The solid line corre-
sponds to the theoretical maximum angle, for a given volume
Ṽ , below which the column state is possible.

present study. Our studies have been performed in an hor-
izontal plane, but we can infer that gravitational effects
on the parameters space of the drop could be modified
slightly when this plane is tilted.

4.2 Touching crossed fibers

We then perform experiments with two touching crossed
fibers (h̃ = 0 and δ > 0) to further explore the validity of
the analytical model for liquids with zero contact angle.
We report the observed morphologies in fig. 7. The column
morphology is observed at small enough tilt angle δ or
rescaled volume Ṽ . On the morphology diagram, we also
plot the analytical prediction for the transition between
the column state and the two other morphologies, which
represents the volume Vmax beyond which a column state
cannot exist between crossed fibers (see eq. (10)). We ob-
serve a good agreement between the analytical prediction
and the experimental results.

The transition between the mixed morphology and
drop state is not captured by an analytical expression as
the exact shape of the drop is not known and because of
the rough estimate of eq. (11). Our experimental results,
however, indicate a coexistence region (light orange in the
diagram) where both the mixed and the drop morpholo-
gies are present. The transitions from the mixed morphol-
ogy to the coexistence region and from the coexistence
region to the drop state appear to be independent of the
Ṽ for Ṽ > 100. We can estimate the Bond number at
which the transition between the mixed and drop states
occurs. The results suggest that the transition between the
mixed and drop morphologies is also independent of the
Bond number. It is possible, however, that the transition

Figure 7: Morphology diagram for touching crossed
fibers of radii a = [100, 150, 180, 230]µm in the param-
eter space (Ṽ , δ) using a volume V ∈ [0.5, 7]µ` of sili-
cone oil (θE = 0 ◦). Red circles show the drop morphol-
ogy, blue squares the column morphology and yellow di-
amonds are the mixed morphology. The light orange re-
gion corresponds to the parameters where both drop and
the mixed morphology are observed. The solid line cor-
responds to the theoretical maximum angle, for a given
volume Ṽ , below which the column state is possible.

4.2 Touching crossed fibers

We then perform experiments with two touching crossed-
fibers (h̃ = 0 and δ > 0) to further explore the validity of
the analytical model for liquids with zero contact angle.
We report the observed morphologies in Fig. 7. The col-
umn morphology is observed at small enough tilt angle
δ or rescaled volume Ṽ . On the morphology diagram,
we also plot the analytical prediction for the transition
between the column state and the two other morpholo-
gies, which represents the volume Vmax beyond which
a column state cannot exist between crossed fibers (see
equation (10)). We observe a good agreement between
the analytical prediction and the experimental results.

The transition between the mixed morphology and
drop state is not captured by an analytical expression
as the exact shape of the drop is not known and because
of the rough estimate of equation (11). Our experimen-
tal results, however, indicate a coexistence region (light
orange in the diagram) where both the mixed and the
drop morphologies are present. The transitions from the
mixed morphology to the coexistence region and from
the coexistence region to the drop state appear to be
independent of the Ṽ for Ṽ > 100. We can estimate
the Bond number at which the transition between the
mixed and drop states occurs. The results suggest that
the transition between the mixed and drop morphologies
is also independent of the Bond number. It is possible,
however, that the transition is a weak function of Ṽ and
the Bond number, but we are unable to detect it through
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Fig. 8. Morphology diagram for a drop of silicone oil places on
separated crossed fibers of radii a = 150 µm in the parameter
space (δ, h̃) using a volume Ṽ = 592 of silicone oil (θE = 0◦).
Red circles show the drop morphology, blue squares the column
morphology and yellow diamonds are the mixed morphology.
The thick solid line is the prediction of our model.

is a weak function of Ṽ and the Bond number, but we are
unable to detect it through our experiments.

4.3 Separated crossed fibers

In this last configuration, the tilt angle δ and the mini-
mum spacing distance h̃ are both non-zero and influence
the resulting morphology. In addition, the dimensionless
volume Ṽ is a parameter to consider, which leads to a
huge parameter space to investigate. To compare experi-
mental measurements with our analytical model, we per-
formed experiments with drops of silicone oil at constant
volume, Ṽ = 592 (corresponding to 2µℓ on fibers of radii
a = 150µm) and vary the tilt angle as well as the sep-
aration distance. The results of our investigation is pre-
sented in fig. 8. Similar to the touching crossed-fiber sys-
tem we observe three possible morphologies: drop, mixed
and column, each defined in a region of our parameter
space (δ, h̃). We also report our analytical prediction in
this diagram (black thick line) that captures the region
where the column state is observed. We should empha-
size that the horizontal axis (h̃ = 0) corresponds to the
situation of touching crossed fibers and we again observe
the transition from a column morphology to a mixed mor-
phology and eventually a drop at large angles. The ver-
tical axis (δ = 0) corresponds to a pair of parallel fibers,
and in agreement with our previous results (fig. 6) we only
observe two states: column and drop. Figure 8 further con-
firms the possibility to predict the observed morphology
on two fibers randomly oriented in space.

5 Conclusions

In this paper, we have investigated experimentally and
theoretically the wetting morphologies on a pair of ran-

Fig. 9. Morphology diagram for a pair of fibers randomly ori-
ented wetted by a drop of silicone oil (θE = 0◦) in the param-
eter space (Ṽ , δ, h̃). Red circles show the drop morphology,
blue squares the column morphology and yellow diamonds are
the mixed morphology. The light orange region corresponds to
the region where both morphologies are observed.

domly placed and oriented fibers. In agreement with pre-
vious studies, we show that in the most general case three
morphologies are observed: a column morphology, a single
drop located at the node, and a mixed morphology with
one drop at one end of a column. We report our analyti-
cal and experimental findings in a new three-dimensional
morphology diagram shown in fig. 9, which captures all
possible situations. The three relevant parameters to de-
scribe the wetting morphologies between two randomly
oriented fibers are the volume of liquid Ṽ = V/a3, the
tilt angle δ and the minimum separation distance between
fibers h̃ = h/a. Additionally, we show that the results ob-
tained previously for the more restrictive cases of parallel
and touching crossed fibers can be recovered for zero spac-
ing distance between the fibers coupled, respectively, with
a zero and non-zero angle between the fibers. Thus, the
three possible situations that we have highlighted in this
article allow us to define a full three-dimensional diagram
(δ, h̃, Ṽ ) to predict the liquid morphology on a pair of
randomly oriented fibers (fig. 9).

The analytical model that describes the transition be-
tween the different morphologies of the liquid on non-
touching fibers is validated by experimental results. It
should be noted that the model is applicable to perfectly
and partially wetting liquids. The characterization of the
transitions between the three different wetting morpholo-
gies will help to better understand the behavior of a wet
fiber array and describe the capillary interactions gener-
ated by a liquid bridge between two fibers. This approach
is especially relevant to systems composed of flexible fibers

Figure 8: Morphology diagram for a drop of silicone oil
places on separated crossed fibers of radii a = 150µm
in the parameter space (δ, h̃) using a volume Ṽ = 592
of silicone oil (θE = 0 ◦). Red circles show the drop
morphology, blue squares the column morphology and
yellow diamonds are the mixed morphology. The thick
solid line is the prediction of our model.

our experiments.

4.3 Separated crossed fibers

In this last configuration, the tilt angle δ and the mini-
mum spacing distance h̃ are both non-zero and influence
the resulting morphology. In addition, the dimension-
less volume Ṽ is a parameter to consider, which leads
to a huge parameter space to investigate. To compare
experimental measurements with our analytical model,
we performed experiments with drops of silicone oil at
constant volume, Ṽ = 592 (corresponding to 2µ` on
fibers of radii a = 150µm) and vary the tilt angle as
well as the separation distance. The results of our inves-
tigation is presented in Fig. 8. Similar to the touching
crossed-fiber system we observe three possible morpholo-
gies: drop, mixed and column, each defined in a region
of our parameter space (δ, h̃). We also report our ana-
lytical prediction in this diagram (black thick line) that
captures the region where the column state is observed.
We should emphasize that the horizontal axis (h̃ = 0)
corresponds to the situation of touching crossed fibers
and we again observe the transition from a column mor-
phology to a mixed morphology and eventually a drop
at large angles. The vertical axis (δ = 0) corresponds
to a pair of parallel fibers, and in agreement with our
previous results (Fig. 6) we only observe two states: col-
umn and drop. Fig. 8 further confirms the possibility to
predict the observed morphology on two fibers randomly
oriented in space.
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Fig. 8. Morphology diagram for a drop of silicone oil places on
separated crossed fibers of radii a = 150 µm in the parameter
space (δ, h̃) using a volume Ṽ = 592 of silicone oil (θE = 0◦).
Red circles show the drop morphology, blue squares the column
morphology and yellow diamonds are the mixed morphology.
The thick solid line is the prediction of our model.

is a weak function of Ṽ and the Bond number, but we are
unable to detect it through our experiments.
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In this last configuration, the tilt angle δ and the mini-
mum spacing distance h̃ are both non-zero and influence
the resulting morphology. In addition, the dimensionless
volume Ṽ is a parameter to consider, which leads to a
huge parameter space to investigate. To compare experi-
mental measurements with our analytical model, we per-
formed experiments with drops of silicone oil at constant
volume, Ṽ = 592 (corresponding to 2µℓ on fibers of radii
a = 150µm) and vary the tilt angle as well as the sep-
aration distance. The results of our investigation is pre-
sented in fig. 8. Similar to the touching crossed-fiber sys-
tem we observe three possible morphologies: drop, mixed
and column, each defined in a region of our parameter
space (δ, h̃). We also report our analytical prediction in
this diagram (black thick line) that captures the region
where the column state is observed. We should empha-
size that the horizontal axis (h̃ = 0) corresponds to the
situation of touching crossed fibers and we again observe
the transition from a column morphology to a mixed mor-
phology and eventually a drop at large angles. The ver-
tical axis (δ = 0) corresponds to a pair of parallel fibers,
and in agreement with our previous results (fig. 6) we only
observe two states: column and drop. Figure 8 further con-
firms the possibility to predict the observed morphology
on two fibers randomly oriented in space.

5 Conclusions

In this paper, we have investigated experimentally and
theoretically the wetting morphologies on a pair of ran-

Fig. 9. Morphology diagram for a pair of fibers randomly ori-
ented wetted by a drop of silicone oil (θE = 0◦) in the param-
eter space (Ṽ , δ, h̃). Red circles show the drop morphology,
blue squares the column morphology and yellow diamonds are
the mixed morphology. The light orange region corresponds to
the region where both morphologies are observed.

domly placed and oriented fibers. In agreement with pre-
vious studies, we show that in the most general case three
morphologies are observed: a column morphology, a single
drop located at the node, and a mixed morphology with
one drop at one end of a column. We report our analyti-
cal and experimental findings in a new three-dimensional
morphology diagram shown in fig. 9, which captures all
possible situations. The three relevant parameters to de-
scribe the wetting morphologies between two randomly
oriented fibers are the volume of liquid Ṽ = V/a3, the
tilt angle δ and the minimum separation distance between
fibers h̃ = h/a. Additionally, we show that the results ob-
tained previously for the more restrictive cases of parallel
and touching crossed fibers can be recovered for zero spac-
ing distance between the fibers coupled, respectively, with
a zero and non-zero angle between the fibers. Thus, the
three possible situations that we have highlighted in this
article allow us to define a full three-dimensional diagram
(δ, h̃, Ṽ ) to predict the liquid morphology on a pair of
randomly oriented fibers (fig. 9).

The analytical model that describes the transition be-
tween the different morphologies of the liquid on non-
touching fibers is validated by experimental results. It
should be noted that the model is applicable to perfectly
and partially wetting liquids. The characterization of the
transitions between the three different wetting morpholo-
gies will help to better understand the behavior of a wet
fiber array and describe the capillary interactions gener-
ated by a liquid bridge between two fibers. This approach
is especially relevant to systems composed of flexible fibers

Figure 9: Morphology diagram for a pair of fibers ran-
domly oriented wetted by a drop of silicone oil (θE = 0 ◦)
in the parameter space (Ṽ , δ, h̃). Red circles show the
drop morphology, blue squares the column morphology
and yellow diamonds are the mixed morphology. The
light orange region corresponds to the region where both
morphologies are observed.

5 Conclusions

In this paper, we have investigated experimentally and
theoretically the wetting morphologies on a pair of ran-
domly placed and oriented fibers. In agreement with
previous studies, we show that in the most general case
three morphologies are observed: a column morphology,
a single drop located at the node, and a mixed morphol-
ogy with one drop at one end of a column. We report
our analytical and experimental findings in a new three-
dimensional morphology diagram shown in Fig. 9, which
captures all possible situations. The three relevant pa-
rameters to describe the wetting morphologies between
two randomly oriented fibers are the volume of liquid
Ṽ = V/a3, the tilt angle δ and the minimum separation
distance between fibers h̃ = h/a. Additionally, we show
that the results obtained previously for the more restric-
tive cases of parallel and touching crossed fibers can be
recovered for zero spacing distance between the fibers
coupled, respectively, with a zero and non-zero angle be-
tween the fibers. Thus, the three possible situations that
we have highlighted in this article allow us to define a
full three-dimensional diagram (δ, h̃, Ṽ ) to predict the
liquid morphology on a pair of randomly oriented fibers
(Fig. 9).

The analytical model that describes the transition be-
tween the different morphologies of the liquid on non-
touching fibers is validated by experimental results. It

should be noted that the model is applicable to perfectly
and partially wetting liquids. The characterization of
the transitions between the three different wetting mor-
phologies will help to better understand the behavior of
a wet fiber array and describe the capillary interactions
generated by a liquid bridge between two fibers. This
approach is especially relevant to systems composed of
flexible fibers where the capillary force can lead to the
clustering of fibers [16, 19].

Our results suggest that a system of fibers can be used
to manipulate liquids on a micro scale. For example, by
mechanically altering the angle and/or spacing distance
between the fibers, or by triggering changes in the liq-
uid volume through condensation or evaporation,[27, 28]
we can change the morphology adopted by the liquid on
the fibers. Additionally, since the model that we have
proposed is applicable to both perfectly and partially
wetting liquids, we can consider using the transitions
between wetting morphologies on fibers to estimate the
contact angle of liquids on fibers. Presently, the con-
tact angle of a liquid on fibers can be computed using
a method proposed by Carroll [18] that involves solv-
ing elliptic integrals. A possible alternative to such a
cumbersome method, for example, would be to use the
transition between the drop and column states of a liquid
on parallel fibers.
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A Partially wetting liquid

Most experiments performed to investigate the wetting
morphologies on a pair of fibers use silicone oil that is
a perfectly wetting liquid (θE = 0o). To ensure that
our model correctly captures the influence of the con-
tact angle, we also performed experiments using dode-
cane (density ρ = 748 kg/m3, surface tension γ = 25.4
mN/m, purchased from Sigma-Aldrich), which is a par-
tially wetting liquid and compared these results to the
analytical prediction. The contact angle of the dodecane
on nylon fibers has been measured and estimated to be
13 ± 1 ◦. The liquid-fiber contact angle was measured
using the shape of a drop on a single fiber [18].
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We perform systematic experiments using a pair of
parallel fibers varying the volume of liquid Ṽ = V/a3

and the minimum spacing distance h̃ = h/a. The re-
sulting morphology diagram is shown in Fig. 10. The
transition between the drop state and the column mor-
phology is captured by the analytical calculation, which
predicts a maximum separation h̃max ' 1.33 for a liquid
with contact angle of 13o. As seen in the morphology
diagram, for small rescaled volumes, Ṽ ≤ 400, there is
a sharp transition between drop and column states at
h̃max = 1.33. As with silicone oil, we observe a coex-
istence region (in orange) in which generally Bo > 1,
an indication that gravity cannot be neglected in such
cases. We note that the coexistence region observed for
dodecane is larger than that for silicone oil, suggesting
that the larger contact angle and the hysteretic effect in
the contact line on nylon fibers makes it more difficult to
spread on the fibers.Page 8 of 9 Eur. Phys. J. E (2015) 38: 62

where the capillary force can lead to the clustering of
fibers [16,19].

Our results suggest that a system of fibers can be used
to manipulate liquids on a micro scale. For example, by
mechanically altering the angle and/or spacing distance
between the fibers, or by triggering changes in the liq-
uid volume through condensation or evaporation [27, 28],
we can change the morphology adopted by the liquid on
the fibers. Additionally, since the model that we have pro-
posed is applicable to both perfectly and partially wetting
liquids, we can consider using the transitions between wet-
ting morphologies on fibers to estimate the contact angle
of liquids on fibers. Presently, the contact angle of a liq-
uid on fibers can be computed using a method proposed
by Carroll [18] that involves solving elliptic integrals. A
possible alternative to such a cumbersome method, for
example, would be to use the transition between the drop
and column states of a liquid on parallel fibers.
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Appendix A. Partially wetting liquid

Most experiments performed to investigate the wetting
morphologies on a pair of fibers use silicone oil that is
a perfectly wetting liquid (θE = 0◦). To ensure that our
model correctly captures the influence of the contact an-
gle, we also performed experiments using dodecane (den-
sity ρ = 748 kg/m3, surface tension γ = 25.4mN/m, pur-
chased from Sigma-Aldrich), which is a partially wetting
liquid and compared these results to the analytical predic-
tion. The contact angle of the dodecane on nylon fibers has
been measured and estimated to be 13 ± 1◦. The liquid-
fiber contact angle was measured using the shape of a drop
on a single fiber [18].

We perform systematic experiments using a pair of
parallel fibers varying the volume of liquid Ṽ = V/a3

and the minimum spacing distance h̃ = h/a. The result-
ing morphology diagram is shown in fig. 10. The transi-
tion between the drop state and the column morphology
is captured by the analytical calculation, which predicts a
maximum separation h̃max ≃ 1.33 for a liquid with contact
angle of 13◦. As seen in the morphology diagram, for small
rescaled volumes, Ṽ ≤ 400, there is a sharp transition be-
tween drop and column states at h̃max = 1.33. As with
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Fig. 10. Morphology diagram in the parameter space (Ṽ ,
h̃) using a partially wetting liquid (dodecane) on parallel
fibers of radii a = [100, 150, 230] µm and a volume of liquid
V ∈ [0.5, 4] µℓ. Red circles show the drop morphologies and
blue squares the column morphology. The light orange region
corresponds to the region where both morphology are observed.
The horizontal solid line corresponds to the analytical predic-
tion for dodecane: h̃max ≃ 1.33.

Fig. 11. Morphology diagram for the touching crossed fibers
(h = 0) in the parameter space (Ṽ , δ). Red circles show the
drop morphology, blue squares the column morphology and
yellow diamonds are the mixed morphology. The light orange
region corresponds to the region where both column and mixed
morphologies are observed. The solid black line corresponds
to the analytical prediction of the maximum angle where the
column state is possible for a given volume Ṽ .

silicone oil, we observe a coexistence region (in orange) in
which generally Bo > 1, an indication that gravity cannot
be neglected in such cases. We note that the coexistence
region observed for dodecane is larger than that for sili-
cone oil, suggesting that the larger contact angle and the
hysteretic effect in the contact line on nylon fibers makes
it more difficult to spread on the fibers.

We summarize the experimental results for dodecane
on touching crossed fibers in a morphology diagram of the
angle between crossed fibers, δ, as a function of the dimen-
sionless volume Ṽ = V/a3 (fig. 11). These results can be

Figure 10: Morphology diagram in the parameter space
(Ṽ , h̃) using a partially wetting liquid (dodecane) on
parallel fibers of radii a = [100, 150, 230]µm and a vol-
ume of liquid V ∈ [0.5, 4]µ`. Red circles show the drop
morphologies and blue squares the column morphology.
The light orange region corresponds to the region where
both morphology are observed. The horizontal solid line
corresponds to the analytical predictions for dodecane:
h̃max ' 1.33.

We summarize the experimental results for dodecane
on touching crossed fibers in a morphology diagram of
the angle between crossed fibers, δ, as a function of the
dimensionless volume Ṽ = V/a3 (Fig. 11). These re-
sults can be compared to the analytical model for liquids
with a non-zero contact angle. We observe a good agree-
ment between the analytical prediction (black solid line)
and the experimental results for the transition between
the column and either mixed morphology or drop state.
We observe a coexistence region where both the mixed
morphology and drop state are present, which is simi-
lar to that observed for silicone oil on crossed fibers, but
larger. The transitions from the mixed morphology to

the coexistence region and from the coexistence region
to the drop state again seem to remain independent of
Ṽ .
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where the capillary force can lead to the clustering of
fibers [16,19].

Our results suggest that a system of fibers can be used
to manipulate liquids on a micro scale. For example, by
mechanically altering the angle and/or spacing distance
between the fibers, or by triggering changes in the liq-
uid volume through condensation or evaporation [27, 28],
we can change the morphology adopted by the liquid on
the fibers. Additionally, since the model that we have pro-
posed is applicable to both perfectly and partially wetting
liquids, we can consider using the transitions between wet-
ting morphologies on fibers to estimate the contact angle
of liquids on fibers. Presently, the contact angle of a liq-
uid on fibers can be computed using a method proposed
by Carroll [18] that involves solving elliptic integrals. A
possible alternative to such a cumbersome method, for
example, would be to use the transition between the drop
and column states of a liquid on parallel fibers.
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Appendix A. Partially wetting liquid

Most experiments performed to investigate the wetting
morphologies on a pair of fibers use silicone oil that is
a perfectly wetting liquid (θE = 0◦). To ensure that our
model correctly captures the influence of the contact an-
gle, we also performed experiments using dodecane (den-
sity ρ = 748 kg/m3, surface tension γ = 25.4mN/m, pur-
chased from Sigma-Aldrich), which is a partially wetting
liquid and compared these results to the analytical predic-
tion. The contact angle of the dodecane on nylon fibers has
been measured and estimated to be 13 ± 1◦. The liquid-
fiber contact angle was measured using the shape of a drop
on a single fiber [18].

We perform systematic experiments using a pair of
parallel fibers varying the volume of liquid Ṽ = V/a3

and the minimum spacing distance h̃ = h/a. The result-
ing morphology diagram is shown in fig. 10. The transi-
tion between the drop state and the column morphology
is captured by the analytical calculation, which predicts a
maximum separation h̃max ≃ 1.33 for a liquid with contact
angle of 13◦. As seen in the morphology diagram, for small
rescaled volumes, Ṽ ≤ 400, there is a sharp transition be-
tween drop and column states at h̃max = 1.33. As with
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h̃) using a partially wetting liquid (dodecane) on parallel
fibers of radii a = [100, 150, 230] µm and a volume of liquid
V ∈ [0.5, 4] µℓ. Red circles show the drop morphologies and
blue squares the column morphology. The light orange region
corresponds to the region where both morphology are observed.
The horizontal solid line corresponds to the analytical predic-
tion for dodecane: h̃max ≃ 1.33.

Fig. 11. Morphology diagram for the touching crossed fibers
(h = 0) in the parameter space (Ṽ , δ). Red circles show the
drop morphology, blue squares the column morphology and
yellow diamonds are the mixed morphology. The light orange
region corresponds to the region where both column and mixed
morphologies are observed. The solid black line corresponds
to the analytical prediction of the maximum angle where the
column state is possible for a given volume Ṽ .

silicone oil, we observe a coexistence region (in orange) in
which generally Bo > 1, an indication that gravity cannot
be neglected in such cases. We note that the coexistence
region observed for dodecane is larger than that for sili-
cone oil, suggesting that the larger contact angle and the
hysteretic effect in the contact line on nylon fibers makes
it more difficult to spread on the fibers.

We summarize the experimental results for dodecane
on touching crossed fibers in a morphology diagram of the
angle between crossed fibers, δ, as a function of the dimen-
sionless volume Ṽ = V/a3 (fig. 11). These results can be

Figure 11: Morphology diagram for the touching crossed
fibers (h = 0) in the parameter space (Ṽ , δ). Red circles
show the drop morphology, blue squares the column mor-
phology and yellow diamonds are the mixed morphology.
The light orange region corresponds to the region where
both column and mixed morphologies are observed. The
solid black line corresponds to the analytical prediction
of the maximum angle where the column state is possible
for a given volume Ṽ .
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