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Libration-induced mean flow in a spherical shell
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We investigate the flow in a spherical shell subject to a time harmonic oscillation of
its rotation rate, also called longitudinal libration, when the oscillation frequency is
larger than twice the mean rotation rate. In this frequency regime, no inertial waves
are directly excited by harmonic forcing. We show, however, that, through nonlinear
interactions in the Ekman layers, it can generate a strong mean zonal flow in the
interior. An analytical theory is developed using a perturbative approach in the limit of
small libration amplitude " and small Ekman number E. The mean flow is found to be
at leading order an azimuthal flow that scales as the square of the libration amplitude
and depends only on the cylindrical radius coordinate. The mean flow also exhibits
a discontinuity across the cylinder tangent to the inner sphere. We show that this
discontinuity can be smoothed through multi-scale Stewartson layers. The mean flow
is also found to possess a weak axial flow that scales as O("2E5/42) in the Stewartson
layers. The analytical solution is compared to axisymmetric numerical simulations, and
a good agreement is demonstrated.
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1. Introduction
Most astrophysical bodies, in addition to their rotation, are subject to harmonic

forcing such as precession, tidal deformation and latitudinal and longitudinal librations.
The nonlinear corrections induced by such a forcing can lead to important steady
and axisymmetric flow, called zonal flow, in the liquid core of telluric planets, in the
subsurface ocean of some satellites or in the atmosphere of gaseous planets. In this
study, we focus on longitudinal libration, which corresponds to a harmonic oscillation
of the rotation rate. These oscillations are generally induced by gravitational coupling
between an astrophysical body and its main gravitational partner around which it
orbits (Comstock & Bills 2003). The librational forcing can have a non-negligible
contribution in the internal dynamics of a planet, and a better knowledge of this
dynamics can yield important information on the structure of a planet, such as an
estimation of the thickness of the fluid layer under the ice shell in some satellites such
as Europa, Ganymede or Encelade (Spohn & Schubert 2003; Lorenz et al. 2008; Van
Hoolst et al. 2008; Rambaux, Van Hoolst & Karatekin 2011) or the existence of an
inner liquid core in telluric planets such as Mercury (Margot et al. 2007).
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In the present work, we derive rigorous results for fast longitudinal libration when
the libration frequency is at least twice as large as the spin frequency. Such a
configuration is not the most common situation, as the main libration frequency often
corresponds to the orbital frequency, which is generally equal to or smaller than the
spin frequency. Here are a few situations that could exhibit fast libration. For example,
one could imagine a planet or a satellite for which the spin and orbital frequencies are
in resonance with a ratio 1 : 2. This situation, which is in principle possible (Goldreich
& Peale 1966; Wieczorek et al. 2012), would lead to fast libration with a libration
frequency equal to twice the orbital frequency. Fast libration could also be present
in a spin–orbit synchronized object when the forcing is induced by another satellite
or planet with a larger orbital frequency. The Galilean satellites (Io, Europa and
Ganymede) are in this situation. Io has an orbital frequency twice that of Europa, and
four times as large as that of Ganymede. It could a priori then force the libration of
Europa and of Ganymede with a frequency twice and four times as large as their spin
frequency, respectively. A similar situation can also be found in exoplanetary systems.
For instance, the two first planets in the 55 Cancri system have orbital frequencies
of 2.81 and 14.65 days (Fischer, Marcy & Butler 2008). Since the two planets are
expected to be spin–orbit synchronized, the frequency of libration of the second planet
induced by the motion of the first planet would be ! = 14.65/2.81 ⇡ 5.2.

The first analytical study of nonlinear effects generated by harmonic forcing was
performed by Busse (1968) in the case of precession in a spheroid. He showed that
a zonal flow is generated in the bulk as an effect of the nonlinear interactions in
the viscous boundary layers. Wang (1970) studied theoretically and experimentally the
nonlinear effects associated with an oscillation of the rotation rate in a cylindrical
container (see also Busse 2010b). The case of a fixed tidal deformation was considered
by Suess (1971), who argued that a counter-rotating vortex should exist near the
axis of rotation. Aldridge & Toomre (1969) analysed librating spheres, but their
experimental study focused on the linear response in the presence of inertial waves:
they showed using pressure measurements that inertial waves can be resonantly excited
in a librating sphere for particular libration frequencies. This has been confirmed
numerically by Rieutord (1991). In his thesis, Aldridge (1967) also mentioned that,
when the inertial waves are not significant, the flow in the bulk seems to drift,
with an amplitude proportional to the square of the libration amplitude, but he did
not report any quantitative measurement. Tilgner (1999) investigated numerically the
linear response to the librational forcing in a spherical shell and studied the effect
of the presence of an inner core, but he focused on the inertial waves and the
attractors only. Recently, Calkins et al. (2010) studied numerically the mean zonal
flow in the same geometry. They confirmed the presence of a mean zonal flow
independent of the Ekman number and which scales as the square of the libration
amplitude. However, their study remained mainly limited to a fixed frequency. Some
laser Doppler velocimetry (LDV) measurements of the mean zonal flow have also been
performed by Noir et al. (2010) in a cylindrical geometry. In this geometry, Sauret
et al. (2012) analysed numerically the influence of the libration frequency. They found
that the mean zonal flow was well described by the theory of Wang (1970) as long
as no inertial waves are excited. The only theoretical study of the zonal flow in a
spherical geometry is the recent work by Busse (2010a). He obtained by asymptotic
methods an analytical prediction of the mean zonal flow in the limits of small libration
frequencies and small Ekman numbers. The present paper extends this theory to the
case of a spherical shell for any frequency.
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The study implicitly assumes the absence of instability. Both shear and centrifugal
instability are a priori possible when the amplitude of libration becomes sufficiently
large. Centrifugal instability has been analysed in detail in a cylindrical geometry
by Ern & Wesfreid (1999) and Sauret et al. (2012). It has also been observed in a
librating sphere by Noir et al. (2009). Shear instability is present in planar Stokes
layers (e.g. Davis 1976), but no clear evidence has been provided so far in cylindrical
and spherical geometries. In the present study, the forcing amplitude is assumed
to be sufficiently small that the flow generated at the libration frequency remains
stable. To fully resolve this leading-order flow, we also assume that the libration
frequency is larger than twice the mean rotation rate (spin frequency). This hypothesis
guarantees that no inertial waves are excited and no critical latitude singularity is
present. It will allow us to obtain an expression for the mean zonal flow in the
whole shell. An expression for the mean zonal flow will also be provided for smaller
frequencies (smaller than twice the mean rotation frequency) but it will exhibit a
divergence associated with the presence of a critical latitude. We shall see that, for any
libration frequency, the presence of an inner core significantly modifies the mean zonal
flow and generates so-called Stewartson layers (Stewartson 1966) across the cylinder
tangent to the inner core.

The paper is organized as follows. In § 2, we present the mathematical framework
of the problem. We provide the governing equations and the hypothesis for the
asymptotic analysis. The leading-order solution at the libration amplitude " is derived
in § 3. In § 4, we focus on the mean flow correction at the order "2. We explain how
the nonlinear interactions within the Ekman layer generate a mean zonal flow in the
bulk of the shell. We show that a discontinuity appears across the cylinder tangent to
the inner core, which requires the introduction of viscous layers as for differentially
rotating concentric spheres (Stewartson 1966). The structure of the solution in these
layers is provided. We show that both axial vorticity and axial flow are the strongest
in these layers. The details of the calculation leading to the expression of the different
fields are given in the appendices. In § 5, the asymptotic solution is compared to
numerical results obtained for both a sphere and a shell, and a fairly good agreement
is obtained. A brief conclusion with some perspectives is provided in § 6.

2. Framework of the asymptotic analysis
We consider a homogeneous and incompressible fluid of kinematic viscosity ⌫

contained in a spherical shell of external radius Rext and inner radius Rint . This shell
rotates in the laboratory frame at an angular velocity that oscillates sinusoidally around
a mean angular value ⌦0. We use Rext and ⌦0

�1 as the length scale and the time scale,
respectively. As both the libration forcing and the geometry are axisymmetric, we shall
assume that the flow remains axisymmetric, that is, its velocity and pressure fields
are independent of the azimuthal variable �. It is then convenient to use the spherical
coordinates (r, ✓,�) and to express the velocity field (ur, u✓ , u�) as functions of  and
� defined by

ur =
1

r2 sin ✓
@ 

@✓
, u✓ = �

1
r sin ✓

@ 

@r
, u� =

�

r sin ✓
. (2.1)

The use of a toroidal-poloidal decomposition of the velocity field is also possible (see
e.g. Dormy & Jault 1998), but we prefer the formulation of Stewartson (1966) to use
the similarity with his analysis.
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In the frame rotating at the mean angular velocity, the dimensionless Navier–Stokes
and continuity equations can be expressed as
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where
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(2.4)

and E is the Ekman number defined by

E =
⌫

⌦R2
ext

. (2.5)

We consider no-slip boundary conditions for a general configuration where the
outer sphere and the inner core do not librate at the same amplitude. The boundary
conditions in the rotating frame of reference then read for the functions  and � :

@ 

@r
=  = 0 and � = "sin2✓ cos(!t) at r = 1, (2.6a)

@ 

@r
=  = 0 and � = "↵a2sin2✓ cos(!t) at r = a, (2.6b)

where a = Rint/Rext is the aspect ratio of the shell, " the amplitude of libration of the
outer sphere and ! the frequency of libration. The parameter ↵ measures the relative
amplitude of libration of the inner core. For a non-librating inner core, we impose
↵ = 0; whereas, when it is librating at the same amplitude as the outer sphere, ↵ = 1.
For the case of a sphere, without inner core, only the condition at r = 1 has to be
applied.

The objective of our work is to characterize the steady flow induced by the
librational forcing. We assume that the forcing amplitude " is small such that the
flow remains stable with respect to the centrifugal instability. Moreover, we consider
the limit " ⌧ 1 in order to use asymptotic methods. In this limit, we can expand the
functions  and � in powers of ":

 = " 1 + "2 2 + o("2), (2.7a)
� = "�1 + "2�2 + o("2). (2.7b)

The first-order solution is expected to be the linear response at the librating frequency
forced by the boundary, while the second-order solution represents that generated
by the nonlinear interactions of the first-order solution with itself. As in all weakly
nonlinear analysis, both harmonic corrections oscillating at 2! and mean flow
corrections (the zonal flow) are expected. It is this second part due to its peculiar
structure that will be our point of focus.
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3. Linear solution
In this section, we consider the solution obtained at the order ". We are interested

in the solution for very small values of E, as encountered in geophysical applications.
For this reason, it is natural to consider E as an asymptotically small parameter.
Nevertheless, this limit is taken after having considered " ! 0. In the small E limit,
we expect viscous effects to be localized in space. In our analysis, we shall require
that, for the first-order solution, they are localized near the boundaries. This strong
constraint can be satisfied if no inertial waves are excited in the bulk by the harmonic
forcing. This is verified if the frequency of the forcing is outside the range of inertial
wave frequencies, that is, ! > 2, which is the condition that we shall assume in the
following.

For ! > 2, the linear response is expected to be mainly localized close to the
boundaries. This solution can be obtained by performing a classical asymptotic
analysis as done for Stokes or Ekman layers. Let us consider first the boundary layer
on the outer sphere at r = 1. The boundary layer solution is obtained by introducing
the local variable r̃ = (1 � r)/

p
E. Let us write the leading-order expressions for  and

� as

 1 ⇠
p

E (o)
1 ei!t

+ c.c., (3.1a)

�1 ⇠ �
(o)
1 ei!t

+ c.c., (3.1b)

where the superscript (o) indicates that we consider the function in the viscous layer at
the boundary of the outer sphere and c.c. denotes complex conjugate. Inserting (2.7a)
and (2.7b) with (3.1a) and (3.1b) into (2.2) and (2.3), we obtain, at leading order in E
and ", the equations
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with the no-slip boundary conditions
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These equations, together with the boundary conditions, give
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4
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sin2✓

4
[e��+ r̃

+ e��� r̃
], (3.4b)

where we have defined

�± = (1 + i)
r
!

2
± cos ✓ . (3.5)

This expression can also be found in Busse (1968). Note that the condition ! > 2
guarantees that the boundary layer solution does not diverge for any value of ✓ . Such
a divergence, called critical latitude singularity, is known to be a source of inner
shear layers as documented for the case of precession (see e.g. Hollerbach & Kerswell
1995).
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A similar solution is obtained in the viscous layer near the inner sphere using the
local variable r̂ = (r � a)/

p
E:
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As r̂ (respectively r̃) goes to infinity, � (i)
1 (respectively � (o)) goes to zero while  (i)

1
(respectively  (o)) goes to a non-zero constant. This part of the solution is responsible
for a contribution in the bulk at the order "

p
E, which corresponds to the Ekman

pumping.

4. Mean zonal flow
4.1. Flow asymptotic structure

We now consider the nonlinear solution at order "2. This second-order correction is
created by the nonlinear interaction of the first-order solution with itself. Note first that
the nonlinear interaction of the solution in the bulk (the Ekman pumping) is expected
to generate a correction at order "2E. As we shall see, this order is actually smaller
than the order of the mean flow correction that we will find in the limit E ! 0. The
main contribution in the bulk will be found to come from the nonlinear interactions in
the boundary layers and to be of the form

 2 ⇠
p

E  ̄2(r, ✓), (4.1a)
�2 ⇠ �̄2(r, ✓), (4.1b)

where  ̄2 and �̄2 are both independent of time and E.
Equations (2.2) and (2.3) imply that  ̄2 and �̄2 would satisfy in the bulk
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�̄2 = 0, (4.2)

which can be rewritten in cylindrical polar coordinates (⇢,�, z) as

@ ̄2

@z
= 0 and

@�̄2

@z
= 0. (4.3)

This means that, in the bulk, these two functions would be dependent only on the
radial coordinate ⇢ = r sin ✓ and could be written as

 ̄2(r, ✓) =  2(⇢), (4.4a)
�̄2(r, ✓) = X2(⇢). (4.4b)

This property is nothing but a consequence of the Taylor–Proudman theorem.
In the next section, we calculate the functions  2(⇢) and X2(⇢) by performing a

matched asymptotic analysis of the solutions in the boundary layers and in the bulk.
The asymptotic structure of the problem is provided in figure 1. In addition to the
boundary layers, the volume is split into two main regions I and II. Because one
of the boundary layers disappears when we cross the cylinder tangent to the inner
core, different approximations are obtained in regions I and II. We shall see that the
functions are discontinuous across the boundary between regions I and II and that
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Stewartson
layers

III III

FIGURE 1. Structure of the flow in the librating shell, showing the presence of three different
zones.

smoothing this singularity requires thin nested layers (region III) in which viscous
effects have to be introduced.

In the following, we only consider mean flow quantities: the overbars are then
dropped (e.g. �̄2 will be denoted �2).

4.2. Boundary layer solution near the outer boundary r = 1

Using the boundary layer variable r̃ = (1 � r)/
p

E, the equations (2.2) and (2.3) for the
stationary component in the boundary layer at order "2 can be written
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From (4.5) and (4.6), we obtain a fifth-order equation for  (o)
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This equation has to be solved with the boundary conditions:
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The expressions for NL
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where the exponents µl are related to �± defined in (3.5) by
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Expressions for the coefficients Al(✓), Bl(✓), Cl(✓) and Dl(✓) are provided in
appendix A.

The solution to (4.9) that satisfies the boundary conditions (4.10) reads
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From (4.5), we obtain � (o)
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The above expression satisfies the no-slip boundary condition � (o)
2 (0, ✓) = 0 only if  2

and X2 satisfies the relation

X2(sin ✓) = F (sin ✓;!) � 2
p

cos ✓  2(sin ✓), (4.18)
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where
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Equation (4.18) is a constraint obtained from the matching between the solution in the
bulk and the solution in the boundary layer on the outer sphere.

A similar constraint is expected from the boundary layer on the inner sphere. The
same analysis in this boundary layer leads to

X2(a sin ✓) = ↵2a2F (sin ✓;!) + 2
p

cos ✓  2(a sin ✓). (4.20)

4.3. Solution in the bulk
Relations (4.18) and (4.20) permit us to obtain the functions  2 and X2 that
characterize the mean flow correction at leading order in the bulk.

We first consider region I, defined by ⇢ > a (see figure 1). In this region, the only
contribution comes from the viscous layer close to the outer sphere. However, the flow
in this region must satisfy a condition of symmetry on the equator: the axial flow
should be antisymmetric with respect to the equator and therefore should vanish on the
equator. Since it does not depend on the axial coordinate, this condition implies that it
should vanish everywhere in region I. In other words,

 2(⇢) = 0, (4.21)

from which we deduce from (4.18) that for ⇢ > a (i.e. in region I)

X2(⇢) = F (⇢;!). (4.22)

In region II, both the conditions of matching with the inner and outer boundary
layers have to be considered. Replacing sin ✓ by ⇢ in (4.18) and a sin ✓ by ⇢ in (4.20)
leads to
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from which we deduce, for ⇢ < a (in region II), that
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Using (2.1), we can also calculate from  2 and X2 the mean azimuthal velocity u�2 ,
the mean axial velocity uz2 and the mean axial vorticity !z2 , which satisfy in regions I
and II

u�2 =
X2

⇢
, uz2 =

p
E
⇢

@ 2

@⇢
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1
⇢

@X2

@⇢
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Note that expressions (4.24a) and (4.24b) resemble the expressions obtained by
Proudman (1956) for the flow between two spheres rotating at different speeds. The
difference is in the numerator, which is now a more complicated function associated
with the nonlinear interaction in the boundary layer of the flow generated by libration.
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FIGURE 2. The function F (⇢;!) versus ⇢ for different values of the libration frequency !.
This function characterizes  2 and X2 in the bulk. Expression (4.27) is plotted in dashed grey
for ! = 10 and ! = 20.

However, as in Proudman (1956),  2 and X2 exhibit a discontinuity across ⇢ = a. In
particular, note that

X2(⇢) ⇠
⇢!a+

X +
= F (a;!), (4.26a)

X2(⇢) ⇠
⇢!a�

X �
= ↵2a2F (1;!) =

↵2a2

2!2
. (4.26b)

The singularities of  2 and X2 can be smoothed across a series of viscous layers as
first shown by Stewartson (1966). In the next section, we provide approximations of
the solution in these layers.

It is worth noting that the solution in region II can be deduced from the solution
in region I. In other words, if we exclude the Stewartson layers, the solution in
a spherical shell can be deduced from the solution in a sphere. Indeed, all the
information is contained in the function F (⇢;!), which defines X2 in region I
(or in a sphere). Unfortunately, we have not been able to obtain a simple expression
for this function (see formula (B 1) given in appendix B). In figure 2, we have plotted
F (⇢;!) versus ⇢ for various values of the libration frequency !. A contour plot
of F (⇢;!) in the (⇢,!) plane is also shown in figure 3. Interestingly, we observe
that F changes sign as ⇢ varies when ! < 8.5. This means that the mean azimuthal
flow generated by libration could be anticyclonic close to the axis and cyclonic further
away.

For large libration frequency !, an asymptotic expression for F (⇢;!) is obtained
as

F (⇢;!) ⇠
!!1

⇢2
p

1 � ⇢2

4!
�

p
2⇢2 (1 � ⇢2)

3/4

4!3/2
+
⇢2(7⇢2 � 5)

4!2
+ o

✓
1
!2

◆
, (4.27)

from which we can easily deduce the behaviour of X2, u�2 ,  2 and uz2 . In figure 2,
we can observe that (4.27) provides a very good approximation for F for ! = 10 and
larger.
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FIGURE 3. Contour levels of the function F (⇢;!) in the (⇢, !) plane.

Close to ⇢ = 0, the function F (⇢;!) can be related to the expression obtained for a
cylinder (Wang 1970). We have F (⇢;!) ⇠⌦Cyl(!)⇢2 as ⇢ ! 0, which leads to

X2 ⇠
⇢!0

(↵2 + 1)

2
⌦Cyl(!)⇢2. (4.28)

The function ⌦Cyl(!) corresponds to the mean angular velocity generated by the
libration of a cylinder. Its expression was first obtained by Wang (1970) (see also
Sauret et al. 2012). Note the simple expression for the function F at ⇢ = 1:
F (1;!) = 1/(4!2).

It is also interesting to provide expressions for  2 and X2 in the limit of a thin shell
(a ! 1):

 2 ⇠ (1 � ↵2)
F (⇢;!)

4 (1 � ⇢2)
1/4 + O(1 � a), (4.29a)

X2 ⇠
1 + ↵2

2
F (⇢;!). (4.29b)

Expression (4.29a) implies that  2 becomes small of order (1 � a) when the inner and
outer spheres are librating at the same amplitude (↵2 = 1). Expression (4.29b) means
that the ⇢ dependence of the function X2 in the thin-shell limit is the same as for a
full sphere.

4.4. Solution in the Stewartson layers
The structure of the viscous layers is the same as in Stewartson (1966) and is sketched
in figure 4. There are three different layers around ⇢ = a: two outer layers scaling
as |⇢ � a| = O(E1/4) for ⇢ > a, and |⇢ � a| = O(E2/7) for ⇢ < a, and an inner layer
where |⇢ � a| = O(E1/3). As shown by Stewartson (1966), the outer layers guarantee
the continuity of �2 (and u�2) and of its first derivative, while the inner layer is for the
smoothing of  2 (and uz2) and higher derivatives of �2. More details on the calculation
leading to approximations of the solution in each layer are given in appendix C. In this
section, we only provide the leading approximation in each layer. In the appendix, we
explain how the next order, which is O(E1/28), can be obtained.
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FIGURE 4. Structure of the Stewartson layers. The inner layer has a thickness of E1/3, and the
external and internal outer layers have a thickness of E1/4 and E2/7, respectively.

In the outer layers, simple expressions can be obtained. In the external outer layer
(⇢ > a), �2 varies exponentially between the two values X ± = lim⇢!a± X2(⇢) of X2
on either side of a in regions I and II:

�2 ⇠ X +(1 � e�⇢̃) + X �e�⇢̃, (4.30)

with

⇢̃ =
⇢ � a

(1 � a2)
3/8 E1/4

. (4.31)

In the internal outer layer (⇢ < a), it is a constant:

�2 ⇠ X �. (4.32)

The function �2 (and therefore u�2) is thus of the same order in the Stewartson layers
as in the bulk. By contrast, the vorticity associated with the mean flow correction is
larger in the outer layers. Its main component is the axial component !z2 , which reads

!z2 ⇠ E�1/4 �X

a (1 � a2)
3/8 e�⇢̃ in the external outer layer, (4.33a)

!z2 ⇠ E�1/4 �X

a (1 � a2)
3/8

f 0(⇢̄)

f 0(0)
in the internal outer layer, (4.33b)

where the internal outer layer variable ⇢̄ is defined by

⇢̄ = (a � ⇢)


a

2E2 (1 � a2)
2

�1/7

. (4.34)

The function f is obtained in the appendix. It can be expressed in terms of Bessel
functions (see expression (C 16)). In figure 5, we have plotted !z2/!z2(a) in each
outer layer. Note that the vorticity is strongly peaked at ⇢ = a, where it reaches its
maximum value (in amplitude)

!z2(a) = E�1/4 �X

a (1 � a2)
3/8 . (4.35)

The discontinuity of the derivative at this point is smoothed in the inner layer.
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FIGURE 5. Axial vorticity !z2/!z2(a) as a function of ⇢̄ = (a � ⇢) [a/(2 (1 � a2)
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1/7
for

⇢ < a (internal outer layer) and of ⇢̃ = (⇢ � a)/[(1 � a2)
3/8 E1/4] for ⇢ > a (external outer

layer).

Contrarily to the azimuthal velocity and the axial vorticity, the function  2 and the
axial velocity depend on the axial variable z at leading order. This dependence is linear
in the outer layers (see expressions (C 8) and (C 18) in appendix C) but it is more
complex in the inner layer. It is in this inner layer (where |⇢ � a| = O(E1/3)) that  2

and uz2 are the largest. They scale respectively as  2 = O(E19/42) and uz2 = O(E5/42).
Note, in particular, that the axial flow is much larger than in region II where it is
O(

p
E). Unfortunately, the expressions for  2 and uz2 are not as simple as for �2. In

the inner layer (where |⇢ � a| = O(E1/3)),  2 and uz2 can be written as

 2 ⇠ E19/42⇤3(a,!) I
✓

z
p

1 � a2
,

⇢ � a

E1/3 (1 � a2)
1/6

◆
, (4.36a)

uz2 ⇠ E5/42⇤4(a,!) J
✓

z
p

1 � a2
,

⇢ � a

E1/3 (1 � a2)
1/6

◆
, (4.36b)

where I and J are the functions given in the appendix by (C 23) and (C 28), and ⇤3

and ⇤4 are related to �X = X + � X � = F (a;!) � ↵2a2/(4!2) by

⇤3(a,!) =
↵oa3/28

(1 � a2)
11/84 �X (a,!), (4.37a)

⇤4(a,!) =
↵o

a25/28 (1 � a2)
25/84 �X (a,!), (4.37b)

with ↵o = �1/[26/7f 0(0)] ⇡ 0.45.
The variations of the functions I(Z, R) and J(Z, R) with respect to R at various

heights Z are shown in figure 6. Note that both functions are largest for small values
of Z, that is, close to the inner sphere. It is also interesting to note the peculiar form
of the axial flow profile, which is composed of a main jet surrounded by two weaker
counter-propagating jets.
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(Z = 0.1 to 0.9 in steps of 0.1). These two functions provide the spatial variation, in the inner
layer, of  2 and uz2 , respectively.
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FIGURE 7. Contours of the function �X (a,!) in the (a,!) plane. (a) When only the
inner core is librating: �X (a,!) = �a2/(4!2). (b) When both spheres librate at the same
amplitude (↵ = 1).

It is important to point out that  2, uz2 and !z2 depend on ! and ↵ only via the
function �X and that they are all proportional to that function. When the inner core is
not librating, ↵ = 0, and �X reduces to the function F (a;!), which has been plotted
in figure 3. The libration of the inner sphere reduces the contribution from the outer
sphere by a simple quantity ↵2a2/(4!2). If only the inner core was librating (the outer
sphere not librating) and if we had used for " the amplitude of libration of the inner
sphere, we would have obtained only the inner sphere contribution �X = �a2/(4!2).
The contours of this function in the (a,!) plane are plotted in figure 7(a). This plot,
which describes the contribution from the inner sphere, has to be compared with the
one obtained for the outer sphere contribution shown in figure 3. We clearly see that
the contribution from the inner sphere is always of the same sign whatever a and
!: therefore, the libration of the inner core always generates a negative (anticyclonic)
mean axial vorticity and a main axial flow that goes towards the inner sphere. In
figure 7(b), we have plotted the variations of �X with respect to both variables a
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and ! when the inner and outer spheres librate at the same amplitude (↵ = 1). Note
that, if we compare this plot with figure 3, we observe that the inner sphere provides
a non-negligible contribution as soon as the radius a of the inner core is not small.
In particular, it strongly increases the domain of parameters where the mean axial
vorticity is anticyclonic.

5. Numerical comparison
In this section, the results of the asymptotic theory are compared to numerical

results obtained for finite values of " and E. Both published results obtained by
Calkins et al. (2010) and results obtained using the finite elements commercial
software Comsol Multiphysics are considered. Both codes rely on a two-dimensional
(axisymmetric) model to be able to reach E values as small as E = 10�6. For
more details about our own numerical procedure, the reader is referred to Sauret
et al. (2010, 2012) where the numerical procedure has already been used for similar
problems.

The first and easiest comparison that can be made is for the libration in a sphere.
In that case, there are no Stewartson layers and no axial flow in the bulk. The main
contribution to the mean flow correction is an azimuthal flow, which is theoretically
expected to be

u� ⇠ "2 F (⇢;!)

⇢
, (5.1)

for small Ekman number E and small libration amplitude ".
Thus, the theory predicts that the zonal flow should scale as the square of the

libration amplitude and be independent of the Ekman number. These properties have
been tested by comparing numerical results obtained with Comsol Multiphysics to the
theory for " ranging from 0.01 to 0.3 and E ranging from 10�3 to 4 ⇥ 10�5.

In figure 8(a), we display the results obtained for fixed frequency and amplitude and
different Ekman numbers. We can observe that the numerical curve, which is already
close to the theoretical curve for E = 10�3, gets even closer as the Ekman number
decreases. The departure obtained close to ⇢ = 1 is associated with the boundary layer
on the outer sphere, which is not included in the theoretical expression (5.1) for the
solution in the bulk. When E decreases, the boundary layer, which scales as E1/2,
becomes thinner, as observed. The amplitude " has also been varied but its effect
has been found to be very weak. For instance, the curves obtained for " = 0.01 and
" = 0.3 cannot be distinguished from those plotted for " = 0.1 in figure 8(a).

In figure 8(b), we have compared the theory to numerical results for different
libration frequencies. Again, we observe a very good agreement for all frequencies.
These results provide a validation of the asymptotic analysis that has led to expression
(5.1).

In a librating shell, we expect from the theory that the azimuthal zonal flow remains
independent of z in the bulk but exhibits a discontinuous behaviour across the cylinder
tangent to the inner sphere at ⇢ = a. Such a discontinuity is visible in the numerical
results. In figure 9(a), the numerical results obtained by Calkins et al. (2010) for two
values of the Ekman number (E = 10�5 and 10�6) are compared with the theoretical
prediction in the bulk (regions I and II).

The agreement is good if we do not consider the region close to ⇢ = a = 0.35,
where the theoretical solution in the bulk is discontinuous. In particular, note that, for
both Ekman numbers, and any value of z, the azimuthal velocity profiles collide far
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FIGURE 8. Mean azimuthal flow u�2 = u�"�2 in a sphere. Comparison of numerical results
(thin lines) obtained in the equatorial plane (z = 0) with the theoretical results (thick lines).
(a) For fixed frequency and amplitude (here ! = 3, ✏ = 0.1) and different Ekman numbers
(dot-dashed line, E = 10�3; dotted line, E = 5 ⇥ 10�4; (thin) solid line, E = 10�4; dashed line,
E = 4 ⇥ 10�5). (b) For fixed Ekman number and amplitude (E = 5 ⇥ 10�5, " = 0.01) and
different frequencies (as shown).

from ⇢ = 0.35 on a single curve, as expected from the theory. As in figure 8, the
rapid localized variations observed in the numerical curves correspond to the boundary
layer on the outer sphere ⇢2 + z2 = 1. Their position changes because different z are
considered. In the Stewartson layers, the solution becomes dependent on the Ekman
number. In figure 9(b) the numerical results for z = 0.6 are plotted with respect to
the outer layer variables (⇢ � a)/E1/4 and (⇢ � a)/E2/7. These results are compared to
the leading-order theoretical prediction as well as to the second-order approximations
obtained for E = 10�6 in this plot. We can note first that there is a noticeable effect of
the second-order correction on the theoretical curve. This correction, which is of the
order of E1/28, is clearly not small for an Ekman number E = 10�6. If this correction
is taken into account, a relatively good agreement is obtained between the theoretical
curve and the numerical results close to ⇢ = a.
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FIGURE 9. Mean azimuthal velocity for " = 2.2 ⇥ 10�3, a = 0.35, ! = 2.2 and ↵ = 0 (no
libration of the inner core). (a) Solution in the bulk: u�2 = u�"�2 versus ⇢. The thick solid
line is the theoretical prediction in the bulk (regions I and II). The thin lines are the numerical
results obtained by Calkins et al. (2010) at three different z (z = 0.4, 0.6, 0.8) and two
different Ekman numbers (E = 10�5, dashed line; E = 10�6, solid line). (b) Solution in the
Stewartson layers: u�2 = u�"�2 versus (⇢ � a)/E1/4 for ⇢ > a and versus (⇢ � a)/E2/7 for
⇢ < a. The thick solid line is the leading-order theoretical prediction in the outer Stewartson
layers. The thick dashed line is the theoretical prediction for E = 10�6 where the correction
in E1/28 has been taken into account. The thin lines are the numerical results of Calkins et al.

(2010) at z = 0.6 (solid line, E = 10�6; dashed line, E = 10�5).

A similar comparison is performed for the axial vorticity in figure 10 and for
the axial velocity in figure 11. In figures 10(a) and 11(a), we have compared the
numerical results with the theoretical solution in the bulk, that is (4.25) with (4.24a)
and (4.24b) in region II (r < a), and with (4.21) and (4.22) in region I (r > a). A good
agreement is observed far from ⇢ = a. Note, in particular, that both axial vorticity and
axial velocity are independent of z far from a, as expected from the theory. However,
there are systematic differences that were not present in the sphere. We suspect that
these differences are due to O(E1/28) corrections generated in the Stewartson layers,
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FIGURE 10. Mean axial vorticity for " = 2.2 ⇥ 10�3, a = 0.35, ! = 2.2 and ↵ = 0 (no
libration of the inner core). (a) Solution in the bulk: !z"

�2 versus ⇢. The thick solid line is
the theoretical prediction in the bulk (regions I and II). The thin lines are the numerical results
obtained by Calkins et al. (2010) at three different z (z = 0.4, 0.6, 0.8) and two different
Ekman numbers (E = 10�5, dashed line; E = 10�6, solid line). (b) Solution in the Stewartson
layers: !z"

�2E1/4 versus (⇢ � a)/E1/4 for ⇢ > a and versus (⇢ � a)/E2/7 for ⇢ < a. The thick
solid line is the leading-order theoretical prediction in the outer Stewartson layers. The thick
dashed line is the theoretical prediction for E = 10�6 where the correction in E1/28 has been
taken into account. The thin lines are the numerical results of Calkins et al. (2010) at z = 0.6
(solid line, E = 10�6; dashed line, E = 10�5).

and which are not negligible for E = 10�6. In figure 10(b), the axial vorticity is
plotted with respect to the outer layer variables. Although a slight shift is observed
in the numerical results, we can see that the vorticity peak with its scaling in E�1/4

is qualitatively described. In figure 11(b), the axial velocity is plotted with respect to
the inner layer variable. The agreement of the numerical results with the second-order
theoretical approximation is remarkable for this value of z. Again, a slight shift is
observed, which seems to diminish as E decreases. Other values of z have also been
tested, and a less good agreement has been observed for smaller values of z. The
numerical results shows a weaker jet, whereas the theory predicts the opposite. We
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FIGURE 11. Mean axial velocity for " = 2.2 ⇥ 10�3, a = 0.35, ! = 2.2 and ↵ = 0 (no
libration of the inner core). (a) Solution in the bulk: uz"

�2E�1/2 versus ⇢. The thick solid line
is the theoretical prediction in the bulk (regions I and II). The thin lines are the numerical
results obtained by Calkins et al. (2010) at three different z (z = 0.4, 0.6, 0.8) and two
different Ekman numbers (E = 10�5, dashed line; E = 10�6, solid line). (b) Solution in the
inner Stewartson layer at z = 0.7: uz"

�2E�5/42 versus (⇢ � a)/E1/3. The thick solid line is
the leading-order theoretical prediction in the inner Stewartson layer. The thick dashed line
is the theoretical prediction for E = 10�6 where the correction in E1/28 has been taken into
account. The thin lines are the numerical results of Calkins et al. (2010) at z = 0.7 (solid line,
E = 10�6; dashed line, E = 10�5).

suspect that this qualitative difference could be due not only to the large value of the
Ekman number but also to the particular structure of the Stewartson layer for small z,
which has not been resolved here.

6. Conclusion
In this paper, we have analysed the mean flow induced by longitudinal libration (that

is, small oscillation of the rotation rate) in a spherical shell and in a sphere, when
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the oscillation frequency is larger than twice the mean rotation rate. Using asymptotic
methods in the limit of small Ekman numbers E and small oscillation amplitude ", we
have been able to show that the main contribution to the mean flow is, in the bulk,
an azimuthal flow that scales as "2, remains independent of the Ekman number and
depends on the cylindrical variable ⇢ only. We have shown how such a zonal flow
is generated by nonlinear interaction of the harmonic solution in the boundary layers.
The dependence of the zonal flow with respect to the libration frequency ! and the
ratio of the core size a has also been comprehensively analysed. In particular, we have
shown how the zonal flow in a shell can be deduced from the zonal flow in a sphere.
We have also seen that, for moderate frequencies 2 < ! < 8.5, both cyclonic and
anticyclonic mean rotation can be created by libration, whereas only weak cyclonic
rotation is created for ! > 8.5.

The presence of the inner sphere has also been shown to create a discontinuity of
the azimuthal flow across the tangent cylinder at ⇢ = a, which is smoothed in a series
of nested viscous layers of widths E1/4, E2/7 and E1/3, as for the configuration of
differentially rotating spheres (Stewartson 1966). The mean flow correction has been
calculated in each of these layers. We have obtained that an axial vorticity field of
order "2E�1/4 is created in the outer Stewartson layers, and that a non-uniform axial
flow of order "2E5/42 is present in the inner layer (|⇢ � a| = O(E1/3)). We have shown
that the spatial structures of these two fields in the Stewartson layers are universal
functions that do not depend (after rescaling) on any parameter. The ratio of the core
size, the oscillation frequency as well as the relative oscillation amplitude of the inner
sphere, have been shown only to intervene in an amplitude factor, which has been fully
characterized. In particular, we have demonstrated that the libration of the inner sphere
adds a very simple quantity to the amplitude factor obtained without inner sphere
libration, which always tends to increase the anticyclonicity of the vorticity field, and
to add an axial flow from the inner core to the outer sphere.

The asymptotic results have been compared to numerical results in the literature
(Calkins et al. 2010) or obtained with a finite-element code, and a good agreement
has been demonstrated for the zonal flow in the bulk. A reasonable agreement has
also been obtained for the peculiar structure of the solution in the Stewartson layers
despite the largeness of the Ekman number in the simulations. In particular, we have
shown that it was necessary to consider the second-order O(E1/28) correction to obtain
a correct agreement. It is worth mentioning that our theory is valid up to O(E1/14).
Even for realistic astrophysical values of E (E ⇡ 10�14), we cannot guarantee that the
error will remain small. This constitutes a weak point of the theory that is important to
keep in mind when the results are applied.

7. Discussion
The present paper has considered oscillation frequencies larger than twice the

rotation rate in a spherical shell. We can naturally address the question of the libration
response when the frequency is smaller than twice the rotation rate or when the
boundaries of the shell are elliptically deformed (that is, the outer and inner spheres
are ellipsoids).

The first point has already been addressed in a cylinder (Wang 1970; Sauret et al.

2012) and for vanishingly small frequencies in a sphere (Busse 2010a; Sauret et al.

2010). For this point, the first difficulty comes from the fact that inertial modes can be
resonantly excited by the harmonic forcing (Tilgner 2007; Morize et al. 2010). When
this occurs, the zonal flow is strongly modified and is no longer dominated by the
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FIGURE 12. The function F (⇢;!)/⇢2 versus ⇢ for different values of ! between 0 and 2.
The function F diverges at ⇢c =

p
1 � !2/4. Expressions (B 1) and (B 3) have been used for

F for ! > 0. The dashed line for ! = 0 is the expression (7.2) obtained by Busse (2010a).

nonlinear interaction in the boundary layers (Sauret et al. 2012). The second difficulty
is the singular behaviour of the boundary layer solution when twice the cosine of the
inclination angle of the boundary matches the oscillation frequency. This singularity is
known to generate internal shear layers in the bulk (see Kerswell 1995; Kida 2011),
the effects of which on the mean flow remain to be quantified.

If we neglect the effect of such internal shear layers and assume no resonance,
the mean zonal flow can be calculated using the same approach as for ! > 2.
The expressions (4.21), (4.22), (4.24a) and (4.24b) for  2 and X2 still apply,
but expression (B 1) for F (⇢;!) obtained for ! > 2 can only be used for
⇢ > ⇢c =

p
1 � !2/4. For ⇢ < ⇢c, expression (B 3) has to be used. This expression

is obtained by the same analysis by changing the definition of the square root in (3.5).
The two expressions diverge at ⇢c, which corresponds to the radius of the critical
latitude on the outer sphere. In a shell, this singularity in F implies two singularities
in X2. The second one, which is associated with the critical latitude on the inner
sphere, is at ⇢c = a

p
1 � !2/4. From an asymptotic point of view, these singularities

mean that another scaling has to be found for X2 close to each singularity.
In figure 12, we have plotted F/⇢2, that is, the angular velocity of the zonal flow

in region I (see figure 1), for different values of !. It is interesting to note that,
for frequencies ranging from 0 to 1, we obtain almost the same constant retrograde
rotation for all ⇢ < 0.6.

As !! 0, expression (B 3) reduces to

F (⇢;!) ⇠
(59⇢2 � 72)⇢2

480(1 � ⇢2)
. (7.1)

This expression differs slightly from the expression obtained by Busse (2010a), which
reads

F (⇢;!) ⇠
(51.8⇢2 � 72)⇢2

480(1 � ⇢2)
. (7.2)
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Expression (7.1) is valid when " ⌧ ! ⌧ 1, whereas Busse’s expression applies when
! ⌧ ". As noticed in figure 12, the difference between these two expressions is
particularly visible for ⇢ > 0.7.

The low-frequency limit is interesting because low-frequency inertial modes are
generally too damped to be resonantly excited. Moreover, for small !, internal shear
layers are limited to the very small region near the equator and to the neighbourhood
of the cylinder tangent to the inner sphere, that is, within the Stewartson layers.
Therefore, they are disconnected from the bulk regions I and II where our solution is
expected to apply.

The second point, that is, the libration response in an ellipsoid, has also been
addressed in the literature (Chan, Liao & Zhang 2011; Zhang, Chan & Liao 2011).
When the ellipsoid is axisymmetric with respect to the rotation axis, our asymptotic
analysis can be very easily adapted to find the zonal flow, which will not be
fundamentally different from that in the sphere. By contrast, when the container is
no longer axisymmetric along the rotation axis, the driving mechanism of the zonal
flow may change, as it may no longer be associated with nonlinear interaction of
boundary layer solution but with nonlinear interaction in the bulk of pressure forced
solutions.

The two issues considered in this section are also discussed in the recent paper by
Noir et al. (2012).
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Appendix A. The nonlinear coe�icients Al, Bl, Cl and Dl

The coefficients appearing in expressions (4.11a) and (4.11b) are given by
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Appendix B. The function F (⇢;!)

For ! > 2, we have the following expression for F (⇢;!) with ⇢ = sin ✓ :
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For ! < 2, the above expression applies when ⇢ > ⇢c =
p

1 � !2/4. When ⇢ < ⇢c,
we have to use the following expression with ⇢ = sin ✓ :
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Appendix C. Stewartson layers
In this section, the solutions in the different layers around ⇢ = a are provided. The

analysis mainly follows the derivation given by Stewartson (1966). In all the layers,
the functions  2 and �2 are related at leading order in E by the same set of equations,
which can be written in cylindrical coordinates as

2
@�2

@z
= E

@4 2

@⇢4
, (C 1a)

�2
@ 2

@z
= E

@2�2

@⇢2
. (C 1b)

In the two outer layers (see figure 4), the function �2 remains at leading order in E
independent of z, such that a simple relation between  2 and �2 can be obtained by
integrating (C 1b) with respect to z:

 2(⇢, z) = �E
z
2
@2�2

@⇢2
+ B(⇢), (C 2)

where B(⇢) is a function to be determined in each outer layer.

External outer layer E1/4

In the external outer layer of thickness E1/4, the function  2 must be antisymmetric
with respect to the equator z = 0. This implies that B(⇢) = 0 in this layer. Another
relation is obtained by considering the problem close to the boundary layer at
z =

p
1 � a2. In this area, a relation between  2 and �2 is deduced by writing (4.18)

close to sin ✓ = a:

�2(⇢) = �2 (1 � a2)
1/4

E�1/2 2(⇢,
p

1 � a2) + F (a;!). (C 3)

Evaluating (C 2) at z =
p

1 � a2 then leads to the equation

@2�2

@⇢2
�
�2 � F (a;!)

E1/2 (1 � a2)
3/4 = 0, (C 4)

which immediately gives

�2(⇢) = F (a;!) �⇤1 exp

�

(⇢ � a)E�1/4

(1 � a2)
3/8

�
. (C 5)

At this level, the constant ⇤1 is, a priori, unknown. We shall see below that it is given
at leading order in E by

⇤1 = �X = X +
� X �

= F (a;!) �
↵2a2

4!2
. (C 6)

In this layer, the axial vorticity is given by

!z2 =
1
⇢

@�2

@⇢
= E�1/4 �X (a,!)

a (1 � a2)
3/8 exp


�
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(1 � a2)
3/8

�
, (C 7)

while the function  2 is given by the relation (C 2) with B(⇢) = 0:

 2(⇢, z) = E1/2 z
2
�X (a,!)

(1 � a2)
3/4 exp


�

(⇢ � a)

(1 � a2)
3/8 E1/4

�
. (C 8)
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Internal outer layer E2/7

The solution in the internal outer layer is obtained by considering the problem close
to the two boundaries (at z = 0 and z =

p
1 � a2). Close to the boundary on the inner

sphere (z = 0), we obtain a relation between  2 and �2 by using (4.20):

�2(⇢) = 2 [1 � (⇢/a)2
]

1/4
E�1/2 2(⇢, 0) +

↵2a2

4!2
. (C 9)

Considering (C 2) at z = 0, we then obtain B(⇢) in this layer:

B(⇢) =
�2(⇢) � ↵2a2/(4!2)

2 [1 � (⇢/a)2
]

1/4

p
E. (C 10)

If we now use the relation (4.18), we obtain from (C 2), applied close to
z =

p
1 � a2 with (C 10):
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�
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p
E
p
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This equation leads to the solution

�2(⇢) =
↵2a2

4!2
+ E1/28⇤2 f (⇢̄) + O(E1/14), (C 12)

with

⇢̄ = (a � ⇢)
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and

⇤2 = �

✓
2
a

◆1/7
(1 � a2)

�5/56

f 0(0)
�X (a,!), (C 14)

where the function f (s) satisfies

@2f
@s2

�
f

s1/4
= 0, f (0) = 1, f (1) = 0. (C 15)

An explicit expression for f (s) is provided by

f (s) =
2 (4/7)11/7 s1/2K4/7(8/7s7/8)

� (11/7)
, (C 16)

where K⌫ is the modified Bessel function of order ⌫ and � (z) is the Gamma function
(Abramowitz & Stegun 1965). Note that f 0(0) = � (4/7)8/7 � (3/7)/� (11/7) ⇡

�1.2246.
The expressions (C 6) and (C 14) for ⇤1 and ⇤2 are such that �2 and @⇢�2, obtained

from (C 3) and (C 9) for ⇢ > a and ⇢ < a, respectively, are continuous at ⇢ = a. As
shown by Stewartson (1966), this continuity condition comes from the condition of
matching with the solution in the inner layer. It guarantees the continuity of the axial
vorticity, which is given in the internal outer layer by

!z2 = E�1/4 ⇤2

21/7a6/7 (1 � a2)
2/7 f

0(⇢̄). (C 17)



Libration-induced mean flow in a spherical shell 207

Using (C 2) and (C 10)–(C 12), an expression for  2 can be obtained:

 2 ⇠ E13/28

✓
1 �

z
p

1 � a2

◆
⇤2

29/7a�2/7 (1 � a2)
1/14

f (⇢̄)

⇢̄1/4
. (C 18)

Inner layer E1/3

In the inner layer, �2 is constant and equal to ↵2a2/(4!2). The function  2 has by
contrast a more complex structure. As shown by Stewartson (1966),  2 = O(E19/42) in
the inner layer. More precisely, it can be written as

 2 ⇠ E19/42⇤3(a,!) I(R, Z), (C 19)

with

R =
(⇢ � a)

(1 � a2)
1/6 E1/3

, (C 20a)

Z =
z

p
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, (C 20b)

and I(R, Z) that satisfies

@6I
@R6

+ 4
@2I
@Z2

= 0, (C 21)

with

(�2R)1/4 I ⇠ 1 when Z ! 0 for R < 0, (C 22a)
(�2R)1/4 I ⇠ (1 � Z) when R ! �1, (C 22b)

I(R, Z = 1) = 0, (C 22c)
I(R, Z = 0) = 0 for R > 0, (C 22d)

I ! 0 as R ! +1. (C 22e)

An integral form of I(R, Z) can easily be obtained from (C 21) using Fourier transform
techniques as

I(R, Z) =
� (3/4)

21/4⇡

Z
1

0

sinh[k3(1 � Z)/2]

sinh(k3/2)

cos(kR + 3⇡/8)

k3/4
dk. (C 23)

The dependence of  2 on ! is only in the function ⇤3, which is found to be

⇤3(a,!) = �
a3/28

26/7f 0(0) (1 � a2)
11/84 �X (a,!). (C 24)

The axial flow uz2 , which can be deduced in the inner layer from  2 by

uz2 =
1
a
@ 2

@⇢
, (C 25)

is then given by

uz2 ⇠ E5/12⇤4(a,!) J(R, Z), (C 26)

with
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a (1 � a2)
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�X (a,!)
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25/84 (C 27)
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and

J(R, Z) =
� (3/4)

21/4⇡

Z
1

0

sinh[k3(1 � Z)/2]

sinh(k3/2)
cos(⇡/8 � kR)k1/4 dk. (C 28)

For comparison with the numerical results, both leading-order and second-order
approximations are used. Second-order approximations can be obtained by considering
the O(E1/28) correction to X � deduced from (C 12):

X �
=
↵2a2

4!2
+ E1/28⇤2 f (0). (C 29)

This provides a new expression for �X :

�X =
F (a;!) � ↵2a2/(4!2)

1 + ⇣E1/28
, (C 30)

with

⇣ = �

✓
2
a

◆1/7
(1 � a2)

�5/56 f (0)

f 0(0)
. (C 31)

If we use (C 30) in the expressions (C 6), (C 14), (C 24) and (C 27) for the coefficients
⇤1, ⇤2, ⇤3 and ⇤4, we obtain approximations valid up to O(E1/14) corrections. It
is these second-order approximations that have been used in figures 9(b), 10(b) and
11(b).
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Corrigendum
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Unfortunately, a few misprints have been found in the paper entitled “Libration-
induced mean flow in a spherical shell” published in J. Fluid Mech. 718, 181209 (2013).
Contrarily to what is written on page 191, the value of F at ⇢ = 1 is F(1,!) = 1/(2!2).
The expressions of the function F(sin ✓,!) given in the appendix B are not correct.

Formula (B1) should be
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Formula (B3) should be
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Formula (0.1) applies when ! > 2, and for ⇢ = sin ✓ > ⇢c =
p
1� !2/4 when ! < 2.

Formula (0.3) applies when ! < 2 and ⇢ < ⇢c.


